
AD-R154 482 SURVEY OF RDA (TRADEMARK)-BASED PDLS (PROGRAM DESIGN i/i
LANGUAGE)(U) COMPUTER TECHNOLOGY ASSOCIATES INC MCLEAN
VA JAN 85 N@8i63-84-C-030e

UNCLASSIFIED F/G 9/2 HIIIIIIIEIIII
lEElhllllllII

Slfllflflflfllfl.lll

IIIIIIEEEIIII
IIIIIIIIIIIIIIh
I llfllfllfllflfll IIlEEEEElllllEEE



1111 .I  __

1j32

li '.

1.8

I.25 1.11116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

_-

,,~~~~~~~~.: .- ....... :.:......-........................................ ........
. . A :A A A 

:.: 
.:: 

: : :: : : : : : :: : : : : : : :: : : . : i: : : . : . . : : . : . L i i ::i : i ' '::: : : : : :: : : : : : :: : : : : : : :: : : : : : :: : : : ' :



VN4CLASSIMP

REPORT DOCUMEN~TATION PACE BFRADWAOPLCTNVO

NOu163 - 84C - 0300

A I L I Oa~all b-6V8-#S IVP E 01I mP 0 07 & rOP OD0CO V ERLD

Survey of Ada*-Based PDL-s
* Final Repurt

(January 1985) *. PLRFamMIN9G O11. REPORT wwaallC

SAda is a rstrdgre~steed'raenarkO of the U.S. Government-

V. AA**0 -6 CONTRACT ON GM&Nl WNu"3Lft(&j
w m Computer Technology- Associates, Inc.

-~ Advanced :software Methods, inc.

I PLA001aeg ON&NIZ 47608 Aw[. AND AD1ftESS I POG~lAb ELLUCJ.PADJLc TASK
Co ltrTechnology Assoc. , In1c. Advanced Software £ltosM4 Om bqUNIT NuvOEMS

7NJnsBranch Drive 17021 Sioux Lane 'e 1 d

__Suite 6(0OWCihr14ug D2P
McLean, VA 22102 G tirhrM)28

'a ~OLLOUG or"Ict NAME AND ADDRESS 
IZ. REPORT DATE

Naval Avionics Center .1anuary 1985 ________

2*L' i t Street and Arliniton Avenuec 13 wU9EcM OF PACC
Indianapotis, 01 46218 86

a~ ~ ~ ~ ~~~~~~~~~~~. 0O'ON AIC AE*ADt1"Ef*etIe.Ce.ISaOIC.) Is SEUNITY CLASS. lot fih0. -SPel)

Unclassified

15. 01 CL ASSFICAIIoOJ.DOWMir-ftADIMC
SCHE DULE

06 01 ST414U.toed S7TEwEwNT (of thf. RopdrUJ

Appjoved fos pblic Yelease.distriuto unlimited

11. ra IS-1f1UIIoW $1 ATEIMEMI (of the oLmosocr en....' On, RJeCh 20. it 01II..ent 604'. PROtf) E
s.;C S1J tied j

1 9 K 0000 (Consiw..4 ravww 00..e 0 it m000W And~ew OE datP &#We naech .e

A10 Pro: rimmmin Design Langu6e, EnV ironmenta I Tool.,A,, i SIARS NAG * POT, SYNTAX,
* \~Vi-i..(, MIetf odlogy AM A /S ), .\DAP, BT() AdaOL JP PL, VitAa~1,P /d

* .'~ AD?,SAIC Adn PDL, Sanders Ada/1'1L, TT Ada PTAL, TIW Ada P1)A., 1:IS Ada PD1L, 2Ada

G. ASST MACY O'ContfOW an eesina. 004 Of 00eceeaF 40 100"U1 OF Woe i~

*Ttht. Nlvat Av.ionic s Center (NAG) has publ ished the results of itsiYrogranriing Design

A P01, is an Fngl ish- like art if icial language, sompt i.ni&:; (all-*d psuedo-code', u'scd in
doc-irent ing, desi gn logic in s;oftware svst ems deve loimlen~t . ( cputer Teclno logy

Ass Tt es and Advance clsof twa te 'e Iic~od:- we r( cootIraclIed Ill( tO NA IOTI nuct I

.u rve) o f Ada-based T'DIs to tipdatV t.Ilke 1982 ':.W aa rye:. ot A~ -~ ~ il

t ith L.' development and advanicmcnt otI the Ala 'ro~irami1 ivIal'ig, i! d-ae

* DD, foam 1473 gotlsOM OF I Nov #s's orsOLaeY UNN.SSIFIED
j n7PACEW.eD 31.in4v.

S-0 0 0-L -60 SeCUlti?? CLASSIPICAIO OF 7941i

~ .. *. . . . . . .
N.. . . . . . . . . . *f.



INCLASSIFIED
Ittb0T V CL&1)'I ro1D. or ?"it Wc. M7,. VPtSl.--..

PDLs have been developed. These PDLs are designed to make fill] and correct use
of the Ada language features and to employ the software engineering concepts

contained within the Ada language.

The purpose of the 1984 NAC PDI. survey was to identify and investigate the curren

set of Ada-based PDLs, updating the existing data collected in the 1982 survey.
In addition, the results will provide a foundation for an Ada-based PDL
evaluation and selection procedure that is heing developed by the STARS
Methodology Project.

rie 1934 NAC PDIL survey gathered information on 28 !'D1..: 7 in the very early
:, ages of development, 5 we.'re disqua I if id )c.l,,: , t l,,,' fa il ed to) meet tile

requirements to he cld '11t l " 16 11Ad1-a _1n;1dI V;- , .ir, C lyzed in dtetail in the

NTS RA&I
DTIC TAB F
Unannounced

Justificat ion..

___ By

"* Distribution/

Availability Codrs

~Avail and/or

Distj Special

w o Ioij. UNCLASSIFIED

$sCumTY CLASSIFICATION Of 1NIS PAGtfr.. Dat Nante'o.

... . - -. .". - . ".. . .'- - .''. ". ... -. . " . " ". .. - . .... ' .. ,f '. -. -. . --



.'

SURVEY OF Ada TM-BASED POLS

FINAL REPORT
(January 1985)

Prepared for:

Naval Avionics Center
21st Street and Arlington Avenue

Indianapolis, IN 46218

Under contract:
N00163-84C-0300

By:

Computer Technology Associates, Inc.
7927 Jones Branch Drive, Suite 600W

McLean, VA 22102

and

Advanced Software Methods, Inc.
17021 Sioux Lane

Gaithersburg, MD 20878

Ada is a registered trademark of the U.S. Government (Ada
Joint Program Office)

8 .5 16.. i Q7



r i..

ACKNOWLEDGEMENTS

The authors extend their gratitude to all those people who sent
information concerning their PDL and patiently answered many questions. Their
contributions were invaluable for the success of this survey.

They would also like to thank Becky Shannon (Computer Technology
Associates) for her help in drafting all the tables in this report.

Finally, a special word of thanks goes to Dr. Lindley for his support and
guidance during the course of the survey, and for his help in reviewing
earlier drafts of this report.

7

K Ii

-....,. . . .



TABLE OF CONTENTS

Page

Acknowledgements i
List of Figures iv

Executive Summary

1.0 Introduction 1

2.0 Scope of the Survey 2
2.1 Identification of Ada-Based PDLs 2
2.2 Response to the Survey 4

3.0 Preparations for Analyzing the PDLs 4
3.1 Classification of Ada-Based PDLs 5
3.2 Characteristics Used to Describe Ada-Based PDLs 6

3.2.1 Syntax/Semantic Characteristics 6
3.2.2 Automated Support Characteristics 8
3.2.3 Methodology Characteristics 9
3.2.4 Documentation Characteristics 10

4.0 Description of Ada-Based POLS 11
4.1 Summary Descriptions 11
4.2 Detailed Description of Ada-Based PDLs 23

4.2.1 ADA/SDP (Mayda Software Engineering, 23
IL Ltd.)

4.2.2 ADAP (SofTech, Inc.) 25
4.2.3 BTO AJ PDL (Bell Technical Operations) 26
4.2.4 Byron (Intermetrics, Inc.) 28
4.2.5 GDADL (General Dynamics) 29
4.2.6 Harris Ada PDL (Harris Corp.) 31
4.2.7 JPDL (U.S. Air Force Systems Command) 33
4.2.8 LTH Ada PDL (LTH Systems, Inc.) 35
4.2.9 POL/Ada (IBM Federal Systems Division) 37
4.2.10 RN ADAP (SofTech, Inc.) 39
4.2.11 SAIC Ada PDL (SAIC) 40
4.2.12 Sanders Ada/PDL (Sanders Associates, Inc,) 42
4.2.13 TI Ada PDL (Texas Instruments, Inc.) 43
4.2.14 TRW Ada POL (TRW) 45
4.2.15 WIS Ada PDL (WWMCCS Information System) 46
4.2.16 XAda (GTE Sylvania Systems Group) 48

5.0 Comparison of Ada-Based PDLs 50
5.1 Increasing Productivity 50
5.2 Increasing Reliability 51
5.3 Promoting Reusability of Software Designs 52

Byron TM  is a registered trademark of Intermetrics, Inc.

--

ii
.p,.°

6

....................................



TABLE OF CONTENTS (continued)

Page

5.4 Minimizing Support Costs 53
5.4.1 Identification of Requirements Met 53
5.4.2 Recording Dependencies Between Units 54
5.4.3 Hiding Unnecessary Details 54
5.4.4 Documenting the Design 55
5.4.5 Preventing Inconsistencies 55

5.5 Comparison of Detailed Features 56
5.5.1 Syntax/Semantic Features 56
5.5.2 Automated Support Features 57
5.5.3 Methodology Features 58
5.5.4 Documentation Features 59

6.0 Other Design Languages 59
6.1 PDLs in Early Stages of Development 59

6.1.1 ACK (Edward F. Hoover, III) 59
6.1.2 ATS Ada PDL (Advanced Technology 60

Systems)
6.1.3 RCA Ada PDL (RCA) 60
6.1.4 SOC Ada P0L (SDC, A Burroughs Co.) 60
6.1.5 TAP (Reifer Consultants, Inc.) 61

6.2 Non Ada-Based PDLs 61
6.2.1 AIM/SEM (ISDOS Inc.) 61
6.2.2 ANNA (Stanford University) 62
6.2.3 CAEDE (Carleton University) 64
6.2.4 System Design with Ada (Hazeltine 64

Corp.)
6.2.5 York Ada PDL (University of York) 65

7.0 Summary and Conclusions 65

References 69

Appendix A: Addresses of PDL Developers A-1

Appendix B: Titles of Documentation Received B-i

:Ii

4
~~~~....... -............................. ....-- --.-..-.-.. • ....-........-.-..--.... "



LIST OF TABLES

Page

Table 2-1: Identification Aspects of PDLs Discussed 3

in Report

Table 4-1: Overview of Syntax/Semantic Features 12

Table 4-2: Mechanisms for Postponed Decision 13

Table 4-3: Mechanisms for Supplemental Information 15

Table 4-4: Types of Supplemental Information 16
Provided

Table 4-5: Other Extra Features Provided 18

Table 4-6: Automated Support Features 20

Table 4-7: Methodology Features 21

Table 4-8: Documentation Features 22

iv4I
• •°° -."",o"° - .""°"%° °".""..........................................-...,.........,..............o. .- ,- , , ,• •• o , ,, •.



EXECUTIVE SUMMARY

The development of the Ada Programming Language has been followed by a
profusion of Ada-based PDLs. These Ada-based PDLs are designed to fulfill
several objectives. The primary objective is to maximize the potential
benefits offered by correct use of both the Ada language features and the
software engineering concepts inherent to Ada. Other technical concerns
include easing the translation of detailed designs into Ada code and
supporting learning of Ada itself. There is increasing evidence that the Air
Force, Army, and Navy are actively supporting the use of these Ada-based
POLs. Consequently, another factor influencing the development of tnese POLs
is the need to be responsive to government standards and requirements.

The purpose of this survey was to identify and investigate the current set
of Ada-based POLs, updating an earlier NAC survey conducted in 1982. It also
provides the foundation for an Ada-based POL evaluation and selection
procedure that is being developed by the STARS Methodology Project.

In this survey, information was acquired on 28 PDLs. Of these, 7 arc in
. the very early stages of development and insufficient material is currently
* . available to permit a detailed analysis. A further 5 PDLs are not considered

to fit the categorization of "Ada-based." The remaining 16 PDLs are analyzed
and discussed in some detail.

By and large, the Ada-based PDLs are intended for use in both preliminary
design and detailed design activities. While a few are little more than Ada
used for design purposes, the majority provide extensions that encourage
expressing a design solution to a problem rather than a premature
implementation. However, there is still little agreement as to the types of
supplemental design information that should be captured by an Ada-based POL.
Some PDLs concentrate on describing interface specifications, while others
address issues of requirements tracing and the specification of design

*constraints. In this area, the POLs appear to be diverging.

In terms of coverage of Ada syntax and semantics, most Ada-based PDLs
support full Ada but recommend deferring the use of certain features until the
design text is translated into Ada code. In those cases where a POL is
expected to be used to develop software that is implemented in a language
other than Ada, the developers generally provide guidelines illustrating use
of the POL in this context.

The Ada-based PDL user can expect more automated support than is
customarily seen for design activities. Only a few tools are already
available, but many of the PDL developers plan to extend this set within the
next couple of years. Most of these tools address document and report
generation, or are oriented towards the later part of the software life cycle.

There are relatively few plans to automate requirements tracking or design
analysis. Consequently, while there is some improvement in the extent of the
automated support provided, it does not match the potential of these PDLs.
This can be attributed to the apparent desire of the Ada-based PDL developers
to produce PDLs that are independent of any particular desiqn method and so

Al can be used with several. This attitude will have to change before more
comprehensive automated support can be developed.

v

|, 7.

6



W .- V- - I

The effort so far has focused on defining the syntax and semantics of the
Ada-based PDLs. While some attention is being paid to how these PDLs fit into
the larger picture of software development and post-deployment support, this
is not addressed extensively. Instead, it seems to be a reflection of the need
to meet government standards and procurement practices, This means that the
developers are making new PDLs available, and generally good ones, without
providing much guidance in their use. This.is not necessarily a criticism of
the developers. It was necessary to start by focusing on one area of concern.
Now that the syntax and semantic aspects are starting to stabilize, it is time
to address the larger issues of design.

At the current time, it is difficult to single out any one PDL as being
superior. A PDL which is strong in some respects is often weak in others.

Therefore, a user seeking to adopt an Ada-based PDL is encouraged to select
one as a basis, and then transplant the additional features needed from other
POLs. Moreover, new Ada-based PDLs continue to be developed and some of these
may offer significant advances. Consequently, users are advised to review new
PDLs as they become available.

In summary, this is an active field where much progress has been made in
the last two years. Already these Ada-based PDLs do much to increase the
visibility and accuracy of software designs. However, if there are to be
radical improvements in software quality and cost, this progress must be
continued. The next step is to put these PDLs back into the software life
cycle and look at the software design process as a whole.

S

S-

!v



1.0 INTRODUCTION

The Ada-based PDL survey summarized in this report was performed for the Naval
Avionics Center (NAC] under the direction of Dr. Lawrence Lindley. The survey
was conducted by Dr. Paul Baker of Computer Technology Associates, Inc. and
Mrs. Christine Youngblut of Advanced Software Methods, Inc.

Over recent years, Program Design Language (PDL) has gained wide

acceptance as the preferred technique for expressing detailed software designs
and there are many different types of PDLs in existence. All offer a mecha-
nism for structuring the design of software, documenting the design so that it
can be effectively criticized in reviews, and guiding the production of code.

The advent of the Ada Programming Language has had considerable impact on
PDLs. Ada is a significant advance over previous higher order languages and
offers many improvements for the software development and maintenance process.
However, people are becoming increasingly aware that these potential benefits
are unlikely to be realized in the absence of similar improvements in the
methods used to develop software prior to the code and unit test phase.
Consequently, the technical community has invested much effort in the
development of PDLs that are specifically oriented towards the Ada language,
or Ada-based PDLs.

In addition to encouraging the use of contemporary software engineering
practices in design activities, these POLs offer several other advantages.
The similarity of the PDL syntax to that of Ada increases the ease of
transitioning from the detailed design to Ada code. The software developer
only has to master one language rather than two. Additionally, learning the
Ada-based PDL supports learning Ada itself, and vice versa.

Various DoD organizations are encouraging the use of these PDLs. Until Ada
. compilers become more readily available, Ada-based PDLs present the best

opportunity for complying with draft directive 5000.31. Indeed, the Army
mandates the use of Ada-based PDL for the development of all management
information systems (MIS) and mission critical systems, and the Air Force and
Navy have mandated it for specific programs. Professional orga izati-ns are
also active in this field. The IEEE has a working group developing a
recommended practice for Ada-based PDLs [1] and the ACM has a special interest
group devoted to Ada issues.

In order to have an early assessment of Ada-based PDLs, the NAC
commissioned an initial survey in 1982 [2]. At that time, the advent of Ada
had just begun to impact the technical community and only a few Ada-based PDLs
were available. Since then, many more Ada-based PDLs have been developed and
some of the earlier Ada-based PDLs have been modified and extended. This
growth in the field has prompted the NAC to commission a new study. This
report presents the results of that study.

The next section of this report describes how information about Ada-based
PDLs was solicited and summarizes the response of the technical community.
Section 3 identifies the characteristics that were used to determine whether a
particular PDL can be classified as "Ada-based". This section also outlines
the full set of characteristics that were used to analyze and compare these

*g PDLs in a consistent manner. The fourth section presents detailed descriptions

o°.- * - -.- -.- * K



of the Ada-based PDLs that were identified in the survey and the following
section summarizes these descriptions in the form of a comparison. Section 6
briefly discusses those PDLs that are not included in the preceding
description and comparison sections. These PDLs are either not yet fully
developed or not classified as Ada-based.

The final section, Section 7, terminates the report with a discussion of
the conclusions and recommendations that have arisen from the survey.

S"2.0 SCOPE OF THE SURVEY

The present survey is intended to be as inclusive as possible and every
effort has been made to identify all current Ada-based PDLs. Each Ada-based

. PDL is evaluated from its written documentation; none are reviewed on the
*basis of interviews or outlines of forthcoming documentation. Consequently,

the survey reflects those Ada-based PDL that are in use today.

This section describes how information was collected. It lists the sources
that were used to identify the developers of Ade-based PDLs, describes how

" these people were contacted, and outlines the response received.

*2.1 Identification of Ada-Based PDLs

*To ensure completeness, several sources were consulted to compile a list
of Ada-based PDLs. These were:

Ada Programming Design Language Survey, Qctober
1982,

A list of Ada-based PDL developers provided by
the Naval Avionics Center,

A notice placed in Commerce Business Daily,

A notice placed in Ada Letters, and

The matrix of Ada Design Language (DL) developers
printed in the December issue of Ada Letters [3].

In total, fifty-one (51) potentially Ada-based PDLs were identified. A
contact from the organization responsible for its development was found for
each PDL. Letters were sent to these contacts requesting the following
information:

• detailed information concerning both the PDL and any support tools.
Instruction manuals and reference manuals should provide a suitable level of
detail. In particular, we require information on the semantic and syntactic
structures of the PDL, the Ada language features which are supported, and the
software methodology which the PDL supports. Examples of the PDL and the Ada
code developed from the PDL would be of great value."

2

a . - . . . . * .



a 00

"4A -4 0"
to 01 c0 ca>to 0u
:1-. .4 0 " 0 . c C . U A

C- 010 ca r0E 010 04g
-4 CJ 0 0 C. 4*

Ai P-4-. CC1 :'01 %LI LIq V .hir c
a CP " 01 4E 0 4. bw A 9 our

ft C - 0 aL)-100f 0 a 1 >4 -Go to Cz 0
4) 14.. 0~h m -. 4 iw 010 U j Aito A
0 0 L)'14h 4 01 c > W 41~0 CbtoG=o E

% - go- -4 0 L-0 0. ~4 C >1a 0-4m 4)- 0(4
0 i4cgnft > E 6d b OLU4W 4) Uz 4) F. U

W 0 hd0 Lhi w m 0 0 bw 0 0CwCto to

0 J0 -1 m-4 61~4 00Eid 1. -)'q >i W bw .1 goc124

o% C 6 m3 0 0 IV IV b01C) W 00 ~ C 0 hIC 0 to -a >
61 4) ~I 00Ph "f a W V0 i01hCJ 0
0 .4.' Ca A tohGi00 0 dr. >,1 6,400 6, C

COC wi0 01 1 - - LI041to .C0 w -(U
iv LI E4 0 L fr44) 6, 4) . E-upo -mw~h U ,
'0 00U OW i 4-0V 1 mC 1h- 'Za~ M1 01 E-0 M r x3
W Z WO C 00-4C0h0 U U*L0 *'hi W toU )co E -

3>qU.1IV

'00OCICP

01 t
c1 0
a'
0 i0

E '0

Cm 0 0 t

-c C 0 '
-4 o 0 >4 r

01P C '-00
C.W b1 610 C0 U

01d 0101
01 14 01 0"4

- PC u1. 0 64 C 4-

u ' A0 01 PC0't
zL so0 U 01 C 6 0

A 0 6d 0 u 0C 0 01 4
0 AOO U) Ai 0 ~ 04 0

-400'- 4) ad .s 0C0' U 1
-4 m.' go '0 6' 0 Z

C MC.J dC A4 Wi E-4 iC I

- -a1 DO0 M00 0
to Cl goZ 01 in 01 0 .20 A

In. at Al Ad fa w0 LI at A0 04
-4 >C dC C'' (a ad '

Qd3 4) 000 0 0 4) 4 UC
u LI Q ) i' Z - qd 0 Mm06E-az c0 0 hi-4 dr

KOOC~~ U 0h.44'



Some initial responses identified PDLs in the very early stages of
development where written documentation is not yet available. In these cases,
the contacts were encouraged to provide brief notes indicating type of PDL
being developed.

2.2 Response to the Survey

Of the fifty-one people contacted, replies were received from thirty-nine
(39). This is a response rate of approximately 76 percent.

Eleven (11) of these people indicated that their organization is not
currently developing an Ada-based PDL. Included in these organizations are
Norden Systems and the Ford Aerospace Company. Both these companies had
previously engaged in Ada-based PDL development, but they are no longer
supporting those efforts. Two others, Hughes Aircraft Company and the-*Naval
Ocean Systems Center, are using the Byron Ada-based PDL developed by
Intermetrics. The U.S. Army Communications and Electronics Command (CECOM) is
not developing its own Ada-based PDL, but is concerned with evaluating and
monitoring the PDLs developed by others. CECOM is currently undertaking an
effort to develop Ada-based PDL guidelines [4].

•~ The remaining twenty-eight (28) respondees provided information on their
PDLs. Of these, seven (7) PDLs are still under development and insufficient
information is available to permit a full analysis. Another five (5) do have
sufficient documentation but do not fall under the classification of
Ada-based. This leaves sixteen (16) Ada-based PDLs for which documentation was
received, and these are the PDLs that are discussed in detail in this report.

The above twerity-eight PDLs are identified in Table 2-1. The names and
addresses of the developing organization, and a contact at that organization,
are listed in Appendix A for each of these PDLs. The documentation received
for fully developed Ada-based POLs and non Ada-based PDLs is identified in
Appendix B.

3.0 PREPARATIONS FOR ANALYZING THE POLS

In this survey, comparisons are drawn between members of a particular
group of POLs, namely those PDLs that have been specifically designed to
support the development and maintenance of Ada software. Prior to beginning a
survey of this nature, it is necessary to ask the following questions:

How is group membership defined?

- . Are the group members sufficiently alike to permit reasonable comparisons?

Which characteristics reveal the relative strengths and weaknesses of the

PD L ?

4



This section addresses these issues. It identifies two PDL
characteristics that are sufficient to determine whether a design language is
an Ada-based PDL, and a set of characteristics that permit describing and
comparing these PCLs.

3.1 Classification of Ada-Based PDLs

A careful review of the current field of PDLs shows that there are two
characteristics that can be used to test whether a particular design language
is an Ada-based PDL: the similarity between the syntax and semantics of the
PDL and those of Ada; and the support provided for particular phases in the
software life cycle.

The first of these classification characteristics, relating to the syntax

and semantics of PDL, is fairly obvious. An Ada-based PDL exhibits syntax and
semantics that are consistent with Ada. With a few qualifications, an
Ada-based POL provides all the language features of Ada. The qualifications
are that some Ada-based PDLs may discourage the use of language features that
are regarded as too implementation oriented, for example, certain pragmas end
representation specifications. These features may either not be supported, or

. a POL may recommend deferring their use until the design text is translated
into Ada code. Alternatively, the use of some features may be discouraged
because the PDL is intended to develop designs which will be implemented in
some programming language other than Ada. Even so, an Ada-based POL always
provides those features, such as packages, that are the essence of Ada.

Moreover, the members of this group are not POLs where Ada is merely used
in a POL context; each member has one or both of the following attributes:

1) The PDL obligates the designer to follow rules and restrictions
appropriate to the design activity.

2) The PDL is extended with features that assist in subsequent
verification, documentation, or support of the design.

The second classification characteristic relates to the support provided
by the POL for particular phases in the software life cycle. All Ada-based
PDLs share the same underlying conceptua- view of the software life cycle and
serve a similar purpose. They support the detailed design phase, and may
additionally support preliminary design or other phases. In particuler, they
should aid creation of the design, provide a mechanism for its expression, and
serve as a template for writing code. Use of the POL should also provide a
common basis for communication among the members of a project team and support
review of the design it captures. Finally, the PDL description should be

* capable of documenting the design.

Although there is some research into the use of graphical Ada-based PDLs,
the progress to date does not justify inclusion of such graphical languages at
this time. Consequently, the term Ada-based PDL will be used throughout this
survey to denote a textual language.

U5

- " ° • . .. -,h • .
• 

- . °- ." - " 4" °w . . • . . . . .,, O o . - . . . ., , ., , - • ,, °o

".' " " "' ' ," ' . '''' . '' ,/ ' .- , " ' '- •"€ ,"." '- -2 '.' - -.- "- '¢" , '''"4''° _''." : " .



In summary, a Ada-based PDL is a textual, procedural design language that
follows Ada syntax and supports, at least, the detailed design phase in the
software life cycle. These PDLs may be used to develop both Ada software and

software written in other programming languages. They usually extend the Ada
language with constructs that are desirable during the design activity. This
classification excludes those PDLs that do not resemble Ada regardless of the
programming language used to implement the design.

3.2 Characteristics Used to Describe Ada-Based PDLs

For the analysis portion of the survey, a list of PDL characteristics has
been developed. These characteristics cover four broad areas of interest:

Syntax/Semantic features,

Automated support features,

Methodology features, and

Documentation features.

The characteristics in each area were used to determine the specific
pieces of information that are recorded about each Ada-based PDL.
These descriptions are presented in a series of tables in Section 4. The
remainder of this section outlines the individual characteristics in each
area. Underlines are used to highlight the initial reference to each piece of
information.

3.2.1 Syntax/Semantic Characteristics

In order to compare Ada-based PDLs fairly, it is essential to recognize
that the intentions of their developers may differ. For example, there is no
universal agreement on whether or not these PDLs should remain completely
faithful to the list of mandatory features in the Ada Language Reference
Manual (LRM) [5]. With respect to the coverage of standard Ada features,
there are two Ada coverage classes (these are sub-classes within the Ada-based
PDL classification):

1) Full Ada: the PDL supports all Ada language
features.

2) Subset Ada: certain features are not provided.
For exampTe, generics may be avoided if the target
language is Pascal.

The coverage class of an Ada-based POL provides an initial characteristic
for this area of concern. It also leads to two other closely related
characteristics. The first of these identifies the particular Ada language
features not supported PDLs in the subset coverage class. The second rco7ds
whether th edevelopers of the Ada-based PDL recommend defferring the use of
particular Ada language features difference between features not sportea-and

6



those whose use should be deferred is that deferral is not enforced. (If a
subset Ada PDL is not supported by automated tools, then presumably reviews
are used as the mechanism for enforcing restrictions to the syntax.)

Most Ada-based PDLs extend the Ada language with additional features
specifically intended to support design activities. These extra features fall
into three groups:

1) Mechanisms for indicating postponed decisions, such as TBD
constructs and English narrative.

2) Mechanisms for expressing supplemental design information
not expressible within the Ada language, often called annotations.

3) Additions to the PDL syntax, such as a new form of program unit or
new types o-tcommentary.

A number of characteristics are used to identify and describe the extensions
provided within each group.

In the first group, postponed decisions, characteristics record the
provision of mechanisms for postponing the implementation of types and
postponing the implementation of operations.

Characteristics for the second group, supplemental information, record the
ability of a Ada-based PDL to capture various types of supplemental design
information. One type is configuration control information such as a version
number, linking instructions, or identification of the system and Computer
Program Configuration Item (CPCI) a module maps to. Reuse information can
support the reuse of design modules by giving details that help to index the
modules so that a library of reusable designs can be built. The component
status, name of the original author, and a change log are also useful.

The PDLs may capture a general overview of the purpose and function of a
module, and a description of the algorihm used. The usage of a module can be
specified by preconditions and postconditions. Details about the error
handling performed by the module are noted under exceptions raised or handled
and error messages issued. Restrictions on a design module may cTude:
timn-constraints,-sizTg constraints, language constraints, hardware
interfaces, and the s ware environment. Validation and verification of the
design can be supported by speci7ication of requirements met and testing
requirements. The ability to measure certain aspects o I F software, and the
'oftware developers, is facilitated by capturing metric data.

Information concerning how one module interacts with others includes task
communication protocols, concurrent usage, interface specifications and
information about external progrrmu- eferences, external data references,
enclosed data units, and enclosedpr oram units.

- Characteristics in the second group also record whether an Ada-based POL
allows expressing general notes and references to supporting literature end
documents. Finally, some PUt provide a keywords used or N/A feature that
facilitates checking whether all required supp ementa egTn information is
present by indicating the types of supplemental information that are provided,
or that are not applicable.

7

x..



The third group of extra features that might be provided by an Ada-based

POL is chiefly concerned with additions to the PDL syntax. These may be:
control constructs, simple statements, forms of commentary, or type
definitions and operations for high level, abstract data types. The provision
of format commands or other features only intended for interpretation by
document and report generators are not included in this category.

In each case, the survey characteristics record whether any extra features
are available. Additionally, the mechanisms used to provide the features are
given. These mechanisms determine the compilabilit of an Ada-based POL.

Each extra feature will exhibit one of the following attributes:

1) Compatible with Ada: legal Ada syntex acceptable to the compiler.
2) Independent of Ada: never recognized by the compiler.
3) incompatible with Ada: never acceptable to the compiler and must be

removed before compilation.

In order for a design expressed in an Ada-based PDL to be compilable, without
producing a host of extraneous error messages, all extra features must be
either compatible or independent.

3.2.2 Automated Support Characteristics

The information of interest here is the type of automated support tools
that are provided to facilitate the use of the Ada-based PDLs. At the current
time, few developers have completed any tools. Those that are available are,
of course, identified in this report. Many developers, however, provided lists
of tools that are planned or under development. This information shows the
direction that the development of automated tools is taking. Hence, planned
tools are also included. A single characteristic is used to capture the tool
status for each PDL. The host computers for the tools are also specified.

The remaining automated support characteristics were determined by
compiling a list of desirable tools. A first version for this list was
developed by merging references to all the tools mentioned in the received
Ada-based POL documentation, The resulting list was far too long, especially
considering how few tools have actually been built. In the end, only the most
important tools were selected for inclusion. The following remarks describe
the nature of these selected tools.

A syntax directed editor assists in correct entry of the PDL and supports
adhering o PDL standards and conventions, thereby reducing time spent on
syntax verification, text editing, and resubmission of the design text. A
pretty printer reformats Adabased PDL text according to a uniform convention

0 ot7mprove te legibility of a design expressed in the POL.

A flexible document generator develops reports by analysis of the PDL and
is guided by format templates or format commands. This type of document
generator can be used to support the development of various types of
documents, including MIL-STD-490 C5-Level specifications. However, there are

' some document generators that are specifically intended for producing C-5
Level specifications. In this report, these tools are called C5 specification
generators.

8



A dictionary generator creates a listing of all symbols used in the design
text and their definitions. Cross-reference tools list references to such
things as task and procedure calls, data element usages, data type
dependencies, and generic instances. A desin level enforcer determines if
the use of Ada in the design text is consist wit- h the design level. For
example, use of unchecked conversion or certain pragmas may be flagged as
inappropriate. Design annotation summary tools extract non-Ada annotations
for analysis purposes. A unit interface repot generator describes how
packages and modules interact. segenerators consider not only data flows
and module invocations, but may also report on event synchronization.

A library manager tracks the relation of structured comments and their
associated code structures. It generally notes the interdependence of modules
and can recognize those modules affected by a modification to the design.
Libraries of PDL designs may also assist new projects in the identiflication
of design units from previous projects that could be reused.

3.2.3 Methodology Characteristics

PDLs categorized as Ada-based follow the Ada language quite closely, and
it is reasonable to assume that all these PDLs will support the software
engineering principles inherent to Ada. That includes modularity, abstrac-
tion, localization, hiding, uniformity, completeness, and confirm abililty.
(Booch [6] provides an excellent discussion of the principles and goals of
software engineering.) Further, these PDLs can all be used to develop a
design following hierarchical decomposition and stepwise refinement
approaches. Since these attributes are considered common to all Ada decompo-
sition and stepwise refinement approaches. Since these attributes are
considered common to all Ada-based PDLs no characteristics are used to record
this information.

In every case, the Ada-based PDLs are suitable for use with a variety of
software development methods. However, some PDLs were developed with specific
methods in mind, and the developers of others recommend the use of particular
methods. Where available, this information is captured by characteristics
that give the name of the methods supported and, to help identify some of the
lesser known m etFod, T-- name of the person or organization that developed
the method.

The life cycle coverage recommended by the developers of the Ada-based
PDLs is a fso iterest . Characteristics are used to record whether the PDLs
are intended for use in the software requirements analysis, preliminary
design, and detailed design phases. (Te particular software lite cycle
representation used is a en from the proposed standard DoD-STD-SDS [7].)

* The code and unit testing phase is not included in this list. This phase
is omitted because these PDLs chiefly record the detailed design that is the
input to the phase. They do not support the coding or testing activities in
other ways.

Similarly, a support phase is not included. Instead, support is regarded
as a repetition of development phases such as preliminary and detailed design.
Consequently, any Ada-based PDL that can be used for certain development
phases can be used for the corresponding phases during support activities.

9

r--------------------------------------------



3.2.4 Documentation Characteristics

Projects using an Ada-based PDL, or any PDL for that matter, require
documentation of the PDL that is adequate to train people in its use and
support their daily design activities by resolving questions quickly as they
arise. Training and support have different documentation requirements.
Ideally, there should be two documents. One is a tutorial guide or overview
document that enables new users to quickly acquire enough familiarity to begin
working with the PDL. The other is a reference manual that is organized in a
fashion that allows the users to obtain accurate an-complete information on
any topic that arises in the use of the PDL. These needs are reflected by
characteristics that record the availability of these types of documentation.

An important factor in the quality of the documentation is the amount of
illustrative material that is provided. Consequently, one characteristic is
used to record whether worked examples are provided to show features of the
PDL in action. A second characteristic is used to indicate whether one or
more larger case studies are providied to illustrate the use of the PDL in its
application TEa design problem of nontrivial size. The documentation for
some Ada-based PDLs also includes examples showing how to the PDL design text
can be translated into languages other than Ada.

The design of many Ada-based PDLs has been influenced by particular
methodological issues. This is reflected by a characteristic that indicates
the inclusion of a method of use discussion in the documentation. This type
of discussion explains how to use the PDL to follow recognized software
engineering practices during design activities. These discussions may also
explain how project standards and design documentation requirements are met.
Another characteristic is used to specify whether the documentation includes
style guidelines that apply to the use of the PDL.

Finally, there are characteristics that record whether documentation is
provided for any tools that suppport use of the Ada-based PDLs. One
characteristic indicates the provision of tool operation notes that explain
how each tool is used. A second indicates-T-ciommercial t-ool-packages have an
installation procedures guide.

10

...................................... h. '.



4.0 DESCRIPTION OF Ada-BASED POLS

This section provides a detailed and thorough description of each
Ada-based PDL. Since there are sixteen of these PDLs, a relatively large
amount of data is recorded. In order to make this information easy to
assimilate, it is presented in two forms. Initially, a set of tables capture
the details of Ada-based PDLs in terms of the characteristics described in the
previous section.

4.1 Summary Descriptions of the Ada-Based PDLs

A set of eight tables are used to outline the characteristics of the
different Ada-based PDLs. These tables are also intended to allow contrasting
the features provided by each of the PDLs.

The first table, Table 4-1, provides an overview of the syntax and
semantic features of the PDLs. It records how closely each PDL abides by Ada
syntax and semantics by: 1) indicating the Ada coverage class; 2) identifying
the particular Ada features not supported by PDLs in the subset class; and 3)
indicating whether recommendations for deferring the use of certain Ada
features are given. This table also indicates the types of extra features
that are provided and, as a consequence of these extensions, whether each POL
is compilable.

Most of the Ada-based PDLs provide features to supplement those of Ada and
details about these extensions are given in the next four tables. Table 4-2
describes the mechanisms used to express postponed decisions. The mechanisms
used to provide supplemental design information are presented in Table 4-3,
and the particular types of supplemental design information that can be
expressed by each PDL are given in Table 4-4. The last table in this group,
Table 4-5, outlines any other extensions provided by the PDLs.

Table 4-6 identifies the automated support tools that are provided for
each Ada-based PDL. It distinguishes between tools that are currently
available, and those that are only planned.

Table 4-7 presents the methodology features of the PDLs. This
information comprises the particular methods that a PDL is intended to be used
with and the recommended life cycle coverage.

The final table, Table 4-8, lists the different forms of documentation
that are provided to support use of the PDLs and any support tools.

O

+ ., . ++ +- • _ P . . . t " " " "- . . . + ' + i . .. . ...+ I i l ki i . . l. l



.'dip

.o.

b'-b

* ,. 6 h

-'-

IUS II I

- --- -.- .---_
°ia

- U °,.

oo 0

.. .. , . ., o o. , .. , .... . ... ., . . ., . .. . .. ... .. .. . ., ,,.. . , ,., _ , ..



- .. - ~ - -

- - - -- - - - - --

41 * II 41 * S
-S - - U ~ 5 0 - 5 - S

A A A - A -
Aii : : * * I * * U :

- . 0. U B.
5 U ~ a - * g *
.41 ~. U SI U B. C. U 0. r

I
o c U - U U U C ~j a

- - - - -

* S

- S

- S - S
- U - 41 0

- - ~% 0~ U
4' C S A

- .U U U .U U
S. S " a - -
S U 41 0 6 41 'U 6 6 6 6

- S ~ U -
£ - U -.- - ~ a *% ~ *j i~ ~ a41 ~ - -o * - 3 4'U I 41

U I U 'U
U 3 3

S.. S. U
41 - U

C 41
a0 S &1

U 0 U I
U

U
S. IA

- - - - - a - - - - - - - - - -

- a
'U 41
~a U 6 U S U 5 3 5 5

- 41 ~41 5.. S.. ~.. a a ~ a a : -~ : a : a ~ . : '~

a..
p

- -- - - -- - -
U
U

'U S

* a a ' i a a a i a a a a ii a i
U

- - -- -- - --- - - ---
S

'0
* A

'U * a a a a a a a a a U
- 5 5S a a::: a:::: a a: a
&

- - --- -- ----------------- -

.3 .1
a

* a.a.
.3 .3 .3
a i4 a. 4* .1 4 * 2 ~a a. a

a. ~ 6

- -- - - - - - -- - - - - - - S

S

0

- . "*1



*~~,w . .4 -

H i u 00 00 u
0. a c a I 0S - w c w

.0.0~ ~~~~ H c
t. S U % j

-- 0 0. U U U 0.H 6 .Loi~ II II [I&-

M Op

H or

so . b. . b. 0. s-

S - - -
16 £ HHL

H N 0 U d

~0
H~~4 9 6I l 1

IL .
d6S

dc 49
ghH

dc -C 0 m n



W:W. - - - - --.. K7- 7- %7 - -4. - -

9 a a 
-. ~~~ ~ 9 -£ 0 B B

- 31. i 0 B

AS as Z 1 .

0.

Ou z
11 2 3ka . a .

49a ada

-~ 0 0 w~
- ' . 0

It 13 .3 .4 3 a 2W 2
a * 8 5 AU -. -

al . a a o' a- 0 '



ftw .1 3" .0-

0utL P

Io- SN MI I
- - --3 1" - - - - - - -

001:m: . I
nnb.

die ~ ~ - - - -

pw6 a

p.thaa a CA ?A
- ~ ~ ~ ~ ~ I uarc~x S 0



viv -I M I I I I I I a a I 4

23"Aaap

a a a a a I I * I

WgqIMMMMJ s

- -- - - - - -- - -

is"U

auu jt U I a a a S I U

-4 A - - - - -C I a- -

nm uu ~ a ta a a a a ago 0 a a

paI~yaasdm 3.3.3
-~~~~~~ -- - - - -- - - -

.aaaJp~ 
UL

a c 3.~ ~~~ 3.3.3.3.3. 
3



5 - -4 Go v

4M~~d A AA-

0UI
C C C C UUU

-4 m4 we

A CS

0 m C SSd h-

hiV C C .4iP
Or H A P4 U0 S DC:.

*~~~~a w A9 3 O E

* £. ddE C owl Cc 1" 1.3 'UP U

Oi 0. 9. CA 1"C.1 1 -- 0S A S M . hiM a34 Ut of C-4. a% w
M .S 0 0 0. hi- w. H'i h .~.

o .C C& Hj U AMC
U i SUN P" Uh DV 3A M CS

0 *. ECS1 A !O : .0 MI. SC :: !C S 62
2 V X 'M E. HVS '00 r VS 16 Ji P 5 C
NF aM " v " Ca4. C 0 .4 C 4hi

MMb c. C.1i4 3. ~.
H V

o~d 0 0i U ~ Un 155S

S0 Cc MV NC.dihih

H2 C mU
- m I0 p 0A 4

C C) H MS aHpab

oa 0 h i d a U
C P. 5 . 0 MA %eHs G

UP CU 'u a ,A U U a4 PP
a. . bD CS Udc0 - 0 -5 %

Cr MUC&i S.. C 0 USa
6 a3 w0 41 .- 4 5

U6 pit. Oh 4. .6 %d C .0 a ~ h CA 0 S

o MM OS US SM S .. * MM 3.. . a~A -S5 A ,A
A. N hi w i .0- -S 3q v .- DUCo

La Id 0 C -Md0 90-
-46 8.0 aU id0 . V

a. SH OS Uw H hi Ole
00 Id5 0 S

w6 4c w o oo. 020 a. 05.5 s O0 00 a 6PC c

bC Sp C

a 4 C 0

hm i IA Hb
0 H 3 u0 5

3 3A C 0

~U HC C U
Sb4 C tUo4U 3

hg U4 0o dC w" 0.4

3M0

00
- - n - -d

ps do



a."

i 0 0 0 M
-. C v c

da 0. -M

o0 a as

*0 2. pk %t .0 4

CU 4. 6. C &Q & I
c vd a 0 a 614a.iI 1 I

06 as 41 0-.12 w *Qd - : :
0 0.40 M 00

4w 06 vO vW 63 A £ 0 a 0 -
-- vm 3-4.2 O4 AC 0. bM 0i -

-- -441 1 a ea. a
.U 0. SO i. £

cca m.2 0. so u 0 0 .1
at A dch.J add a C

U 9.04 06 -0. go me MM a a

cU 3 D.I. A; now4k qi.U .S
.3 ! m 60. a. 0 0 ON.. M

eN u g m ~ A ~ AI~ 0.4 40 a= 21" a I-tp o.d
040 8.. be U0 : U .4.0 k0~ 6 & aI6 S 6 0kv~

U ~ ~ ~ ~ ~ ~ ~ ~ 1 :A2 - 60 i U 04U 3
0.? r ;v0J : :6 0. ph~ 0 20. s

a. a -m3M4.4 0% fdA
0-.C me A.S me I0.

b6 00 s ..6 6

N 0cck.. 0. so ule. a

U~4 :== .40 At. 66 3

-, U 10 6 O-U

00 3 Ag c4 b00 10So lv .

h.MUC O 0 00 C "4.00 b. 304 as VID 0 C 0 3 3.3

W& ie * a: 0,r 2u 2C4 OZi. On' .2 *M. 80. av a

~u so. 0 Cc

000 03 & a. u2.

A IN66 k. * C 86 Nk

ONO Si a6 An0O v@ di *0@.0

UA 44 WO I00 3 0 ' gi 4 .

&06 0 'go 009

[400



,...,

tW

I.M

- - - - -.- -- "- - -

w

02

,e . a a a I a a I I a I I a * * a

,0 | 1
w uc

US "

U~ . * a ,a a" a

a

I =""
OU

l-. 11

-... " aI a - - a a a a a a I * *

U 4U

a 0-

. A

ab dC a a aS a a a a a a a .60 !c

II. 2

US It I, I I I I .

Si S • w i

UUIt-

4) 5.
* SM

a°

• .;, ;'.-:..h ..;. --:..''-;: "'.,'. .,-"..'-.'__.r " ''. ., :- _'" , , '- - ; " . -. • , - , - , " : a":



--

. la' b"* P~
a Il'

* a. a * UI U-. i a a UU~ woo a a

upa

me 1 aA
-V S0

J 

•

49
In ell



FA

dc 0

W t* * * * *

C a

we- am ps ba so IN

0

a 9

MS 5 U 96
O~~~ ~ P5 M 5 S I a a a A a s a



rr -.

4.2 Detailed Descriptions of Ada-Based PDLS

The tables in the previous subsection only give an overview of the
Ada-based POLs. For example, they list the type of automated support tools
that are available or planned, but do not differentiate between the
cross-reference tools provided for one PDL and another. Similarly, the tables
identify the different types of documentation that are provided, but do not
capture the extent of each piece of documentation.

This subsection provides this additional information. For each Ada-based
PDL, it addresses the four areas of interest discussed in Section 3.2.

4.2.1 ADA/SPD (Mayda Software Engineering, IL Ltd.)

ADA/SDP is based on an earlier non-Ada PDL called SOP and, as a result of
this, is somewhat different than the other Ada-based PDLs. It uses a
simplified Ada syntax to facilitate a more natural and readable design
description and allows the software developer to choose the extent of detail
appropriate for the task in hand. This is intended to reflect the human
factors considerations of the design process. Unlike many Ada-based PDLs
tools, the automated support provided for ADA/SDP can accept and process

* natural language.

.- 4.2.1.1 Syntax/Semantic Features of ADA/SDP

ADA/SOP differs from Ada in four ways. First, the end of line terminator
is significant in delimiting statements and use of the semicolon is optional.
When statements must continue over multiple lines, a continuation character
(\) is used. Second, in the source text file, subprogram parameters are
surrounded by a sentinel character ($), but in the pretty printed output these
parameters are underlined instead. Type and mode information is treated in a
similar way. Third, keywords are recognized in a given line only if the line
begins with a keyword. Fourth, identifiers may consist of more than one word.

Natural language statements are allowed wherever a simple statement orexpression is allowed.

-- ADA/SDP divides a design into design units which correspond to Ada program
units. Each of these design units is introduced with one of the appropriate

. . Ada keywords: PROCEDURE, FUNCTION, PACKAGE, or TASK. ADA/SOP also provides a
. new keyword TEXT which introduces a unit consisting only of commentary. The

Ada keywords are followed by a construction which is the unique semantic
innovation of ADA/SOP. Where Ada follows a program unit keyword with the name

- -' of the unit and a list of identifiers, ADA/SDP uses a "defining sentence"
which is a specially annotated natural language sentence describing the
action of the unit. The sentence consists of action words and object names.
In order to make the sentence easily machine processible, names that refer to
the parameters of the unit are delimited with the sentinel character. Thus,
an ADA/SDP design unit is introduced by a statement that describes its purpose
and simultaneously defines its formal interface with other units.

23



Type definition facilities in ADA/SOP are nearly identical to those of
Ada. However, the POL accepts incomplete type definitions supplemented by
narrative description. Also the visibility rules differ from Ada in that the
WITH statement implies both the Ada WITH and USE statements.

ADA/SOP cannot be directly compiled.

4.2.1.2 Automated Support Features of ADA/SDP

ADA/SDP is currently supplied with a single tool that performs text
processing, syntax checking, and cross-referencing functions. At present,
there is no separate documentation for the tool and the remarks here are
largely based on inspection of the large case study furnished by the
developer. The tool will be available initially for Unix systems, VAX/VMS,
and on Data General machines.

The standard document format produced by the tool features a .imbered
table of contents, a listing on a separate page for each element of the
design, and separate cross-reference tables for modules, objects, types, and
packages.

The page format for the ADA/SDP listing surrounds the PDL with a box that
facilitates associating line numbers with the PDL lines. Outside the box, the
listing shows page references for identifiers that occur on the corresponding
line inside the box. These cross-reference annotations are supplemented by
the cross-reference tables where references show both the page and line
number.

The text processor prints keywords in boldface and repeats the
identification of the PDL text block at the top of the page for ease of
reference. It also performs text rearrangement for items embedded between
sentinel characters. For example, the phrase:

function user confirms $user action: request type$
return boolean is separate

is rendered in the printed document as:

function user confirms user action return boolean
user action : request type
amount of money : money

return boolean is separate

A tool that would render such phases into compiler compatible Ada
text is under development and should be included in the second version of the
PDL tool.

Each function and procedure in ADA/SOP is defined by a sentence that
describes the design unit interface. When the documentation tool assembles
the module dictionary and cross-references, these sentences are repeated and
serve the purpose of a unit interface specification document.

24

W %



4.2.1.3 Methodology Features of ADA/SOP

The ADA/SOP POL was developed for use in preliminary and detailed design.
It is not intended for use with any particular software method.

4.2.1.4 Documentation Features of ADA/SDP

The POL is supplied wit', a single reference manual that is marked as a
draft version. The manual describes both the syntax that derives closely from
Ada and the syntax that pertains to the earlier SDP design language. Various
points are illustrated with examples that are especially useful in
illustrating the narrative flavor of the Ada-based POL. However, the draft
version does not contain a complete tutorial on the use of ADA/SDP during
design activities. In particular, it would be helpful to have a discussion on
how to convert the narrative PDL to code acceptable to the Ada compiler.

4.2.2 ADAP (SofTech, Inc.)

This PDL is one of the three Ada-based PDLs developed by SofTech that are
discussed in this report, the others being RN ADAP and JPDL. ADAP was
developed before RN ADAP and the high degree of similarity between these two
PDLs suggests that ADAP provided the basis for RN ADAP. There are no
significant similarities between these two PDLs and JPDL.

RN ADAP will be discussed in Section 4.2.11. However, in comparison to
ADAP, it should be noted that RN ADAP provides 1) a different approach to
deferred specification of identifiers; 2) more specific style recommendations;
and 3) guidelines for conversion of ADAP to Pascal.

4.2.2.1 Syntax/Semantic Features of ADAP

ADAP allows the use of complete and correct Ada syntax. The POL design
text consists of Ada interspersed with English prose that provides the design
narrative. In this PDL, the English prose is delimited by a special symbol
(//). The English prose can be substituted for statements, expressions, or
type definitions.

ADAP is not directly compilable without textual preprocessing to replace
the English prose. However, if legal subtitutions are made for the delimi'ted
prose statements, then the text should be compilable.

4.2.2.2 Automated Support Features of ADAP

"4 No automated support tools are provided for ADAP.

25

........................................



4.2.2.3 Methodology Features of ADAP

ADAP is intended to address the software design principles of modularity,
"Z localization, abstraction, information hiding, reliability, and completeness.

In particular, it supports the Constantine/Yourdon Structured Design method,
accompanied by top-down development and stepwise refinement.

4.2.2.4 Documentation Features of ADAP

The ADAP manual provides an excellent example of quality instructional
material that can help new users of PDL. The manual introduces each feature
with a careful explanation and a clear example. The manual appears to be
intended to teach good design practices in Ada, and the PDL is explained in
the framework of this objective.

Style guidelines are provided in the form of a discussion on standard
structured header commentaries. Together with the many examples, this guide

*) defines a consistent usage style for the PDL.

4.2.3 BTO Ada PDL (Bell Technical Operations)

The Ada-based PDL described here was developed for use in the design of
the Vehicle Integrated Defense System (VIDS). It was jointly developed by Bell
Technical Operations and Dalmo-Victor. Both these companies have established
guidelines for developing PDLs. In the case of BTO Ada PDL, the Ada-based
aspect of the PDL was only one of several design requirements.

S-4.2.3.1 Syntax/Semantic Features of BTO Ada P0L

BTO Ada PDL is another representative of the class of Ada-based PDLs that
use complete Ada for design purposes. In this case, the normal Ada comment
statement is used to delimit design narrative. Since there is no distinction
between design narrative that will eventually be replaced by code and

* *. commentary that will remain to explain the design, readers must distinguish
between the two based on context.

The documentation of BTO Ada P0L does not explicitly comment on whether
the design text is compilable, but most is. For example, Example 4.4 from the
manual is compilable:

loop
-- get a reply to operator query
-- when the reply is
-- a 1, 2, 3 or 4 exit
-- the loop
-- else request a retry

end loop;

Here comments are used where zero or more statements are required in Ada. To
the Ada compiler, the above loop has no statements. A limitation of this

... technique is that where the compiler requires at least one Ada statement, the
comments must be interspersed with Ada statements in order to avoid compiler
errors.

26

-- - -- - --- -.. ,. ' v-,



-.. .. . ... . . . . . . . ... . . . . .

Example 4.5 shows one of the cases that are not compilable:

loop
-- read next cord;
exit when --endfile marker;
-- process input data;

end loop;
However, this example could be rewritten in a compilable form as:

~l oop
l -- read next record

exit; -- when endfile marker
-- process input data

end loop;

4.2.3.2 Automated Support Features of BTO Ada PDL

No automated tools are provided.

4.2.3.3 Methodology Features of BTO Ada PDL6

This PDL is intended as a design aid for use in describing a software
implementation. The developers of the PDL recognize the dangers of using a
PDL that allows highly detailed language dependent representations to be
produced. They caution that the POL should be used to formalize a definition
of the solution to a problem, and not used to code a solution.

There are no indications that this POL was designed for use with any
specific design methods.

4.2.3.4 Documentation Features of BTO Ada PDL

The reference manual is devoted to explaining what features of Ada a
designer must know in order to perform the PDL phase of a design. The manual
will be of most use to the reader who is already familiar with the use of PDL
in design and who requires guidance on how Ada features should be used.

4.2.4 Byron (Intermetrics, Inc.)

Byron was the first Ada-based POL to be supported by a powerful set of
automated tools and is now well established. It is one of the few PDLs that

6Q was developed as a marketable product, and is the only PDL identified on this
survey that is in use by several organizations.

Byron provides a uniform means of expression for all phases of a project.
It is intended not only to ease communication, but also to facilitate the
provision of automated support for each software development activity. One of
its objectives is to help ensure that documentation is consistent with the
executable code. This is achieved by keeping all information about a program
unit in a single source file.

-". .

.bL .27

_n7-



4.2.4.1 Syntax/Semantic Features of Byron

Byron uses the full Ada languaqe for design purposes. In addition, iv.
provides three design constructs called Byron text, Byron directives, ano
Byron markers. Each is preceded by the Byron prefix symbol (--I). This
symbol causes them to be ignored by the Ada compiler but allows them to be
easily distinguishable by the human reader.

Byron text consists of the prefix symbol followed by English narrative.
It is used immediately after the declaration of an identifier and causes the
descriptive text to be associated with that identifier in the program library.

Byron directives are used to annotate the design with supplemental
information. They consist of the prefix symbol followed by one of eleven
Byron keywords and appropriate text. The PDL reference material indicates
those directives that are required and those that are optional. It also
provides guidelines concerning the order in which directives should be given.

The final additional construct is the Byron marker. The previous two
types of constructs are used in the declarative part of the PDL. The Byron
marker, however, is used in the statement part. The effect of this construct
is to mark lines of code or comments as Byron text. This allows the report
generator to include these lines in the reports it produces. The Byron marker
consists of the prefix symbol. It can be used at the end of a line to mark
the entire line, or earlier in the line to mark the following code or comment.

All of the Ada keywords and user defined Ada identifiers are significant
. in the PDL text. This text establishes a design structure and a dictionary of

known program units, objects, and types. When Byron design annotations are
encountered they are assumed to apply to an object or control structure as
determined by their location with respect to the Ada text. In this fashion,
Byron adds new attributes to the entities in Ada. These attributes are then
extracted and summarized in the reports derived from the design text.

In surnary there are three semantically different ways in which a Byron

design may be read:

o The Ada compiler's reading,

o A linear reading of the fully annotated design
text to understand the Ada code in the context
of the extra Byron design information, and

0 A reference reading in which entities are listed
separately from their source text location, but
together with their Ada and Byron defined attributes.

Byron has a predefined package called TBD which contains Ada type
definitions that can be used to defer the full specification of data types.

4.2.4.2 Automated Support Features of Byron

The Byron POL is provided with an extensive set of tools designed to
.. operate on a VAX machine. Although the set does not cover all of the

categories in Table 4-6, the coverage is impressive.

28



The library manager is a useful tool that has an especially important
application because Byron design annotations are recognized in the framework
established by the legal Ada statements. This allows Ada packages to inherit
design information through their association with other packages. The library
manager ensures that changes to the design information of one package will be
reflected in all the packages related to the changed one. In essence, it
offers the same facilities for incremental and independent extraction of

* .design information that the Ada compiler offers for incremental and
independent compilation of modules.

The flexibility of the Byron document generators support the use of Byron
to develop government required documentation such as the C-Level
Specifications defined in DoD-STD-490.

*4.2.4.3 Methodology Features of Byron

Byron can be used with a variety of design techniques. The developers
recommend that users become familiar with several techniques so that they can
select those most appropriate for each project. The factors that should be
considered in this selection include: availability of resources, organization
of the project team, and the structure of problem to be addressed.

Particular attention is given to the use of Byron with the Modular Program
Construction approach developed by Barbara Liskov. This design method is an
extension of the stepwise refinement technique. It views a program as a

* high-level procedural abstraction that can be constructed from lower level
procedural, data, and control abstractions.

4.2.4.4 Documentation Features of Byron

Documentation for Byron is extensive and covers not only the PDL but also
the large number of tools that are furnished with the language. The Byron
developers reflect their interest with the methodology work of Barbara Liskov
by including a reprint of one of her papers with the documentation. The
methodology is also summarized adequately in the Byron manual itself.
Rounding out the documentation set is an installation guide that can help new
users install the Byron tools on their machine.

What is missing in the current documentation is an introduction for the
relatively inexperienced user. If one imagines the situation of learning the
Liskov method, the Ada language, the Byron PDL, and half a dozen tools at the
same time, the need for a gradual, moderately paced introduction becomes
apparent.

• 4.2.5 GDADL (General Dynamics)

the General Dynamics PDL consists of a combination of Ada code and pseudo
code design statements. Specifically, it uses Ada to describe the program
structure and data structure, and design statements to describe the control
flow of the program.

29

0 "

* - - -*. - . ' * *.

* * - *.



4.2.5.1 Syntax/Semantic Features of GDADL

A design in GDADL contains three types of text: full legal Ada, comments,
and design statements. The types are never mixed in any fashion that would
prevent compilation of the code. Thus, a GDADL design should always be
compilable except for the following case.

The visibility rules of GDADL do not require a WITH statement. Instead,
all packages are simultaneously accessible. However, in order to be
compilable, WITH clauses must be given. Similarly, the USE statement has no
effect in GDADL. Consequently, fully disambiguated names must be used for the
benefit of the GDADL processor.

The declarations of program units, objects, types, task entries, and
generic parameters are written in full Ada. These declarations are used both

-by the compiler and the PDL processor.

Design information concerning the bodies of the program units is written
in PDL design statements. These statements are Ada comments that begin with a
special symbol (--I). They may use Ada keywords to express control structure
information, but the intent is to use English narrative for high level
expression of the algorithm. The design statements are searched by the PDL

0processor for references to objects, types, and program units defined in the
Ada declarations.

* When the design is implemented, Ada code is added so that code and design
statement alternate in small groups of lines and the relationship of design
and code can be easily determined.

GDADL displays one lexical restriction that is not present in Ada. When a
.°keyword begins a standard construct, for example the IF in IF .. THEN

ENDIF, the keyword must be the first nonblank symbol on a line. On the other
hand, GOADL will overlook the omission of a semicolon in a design statement.

4.2.5.2 Automated Support Features of GDADL

GDADL is supported by a single tool that combines the functions of a
pretty printer and a cross-reference generator. The tool is presently hosted
on VAX and HPIOO0 computers, in addition to a Textronix 8560 workstation.

The pretty printing function has the usual features and one uncommnon one.
The pretty printed output is annotated with "flow lines." These lines mark
references to other procedures and package declarations by means of a line
that points to the margin of the text where the page and line reference
numbers are recorded. Although the same function is served by the
cross-reference tables, the flow line annotation is a useful feature.

Many software developers feel that the RENAMES and USE Ada language
features are best not used in Ada code, much less POL text. The GDADL tool
reflects this concern by not recognizing these constructs. In the case of
RENAMES this means that contraction of a long unambiguous name to a short

30

-..-'<-. " "..'. **** *.." ."- " '--" " " * ' * .. . .- .. .-



, . .. - .'. -

locally valid name is not acceptable. The decision not to support the USE
construct means that fully disambiguated names must be used and infix
operators cannot be overloaded.

The GDADL tool also provides a mechanism to extract design documentation
and exclude non-design Ada statements from the printed report. This feature
is helpful for maintaining accurate, up to date documentation, particularly
when the design is iterated in the face of test or analysis results obtained
late in the software life cycle.

4.2.5.3 Methdodlogy Features of GDADL

GDADL is intended to improve productivity and quality during the software
development process. However, its use is expected to yield the most benefits
during maintenance and enhancement activities.

GDADL was developed to support the Disciplined Software Design Approach
(DSDA) used at the Pomona Division of General Dynamics. This methodology uses
a real-time version of Tom DeMarco's classical Structured Analysis to define
the software requirements. These requirements are expressed and verified
using the PSL/PSA tool developed by the ISDOS project. Then a stepwise
refinement approach is used to define the design.

GDADL is intended for use in three stages of design refinement called:
architectural design, executive design, and detailed design.

4.2.5.4 Documentation Features of GDADL

Documentation for GDADL consists of a users manual, a reference manual,
and a discussion of the DSDA methodology. The manuals are in an early draft
stage, but their tables of contents indicate that the planned documentation
will be more than adequate. However, the available material does not specify
whether case studies and a graduated series of introductory tutorial material
will be included.

4.2.6 Harris Ada PDL (Harris Corp.)

Harris Ada PDL was one of the first Ada-based PDLs to be developed. It
evolved from an earlier non-Ada PDL and the experience gained with the
previous design language was used to guide the development of the Ada-based
PDL. The objective of the new POL is to provide a form of communication that
is easy to use, easy to understand, and that simplifies definition, design,
and review.

The PDL is only one part of the Harris Integrated Software Methodology
(ISOMET). It is termed a Process Description Language, not a Program Design
Language, and intended to support both requirements definition and design
activities.

3

31

.°



4.2.6.1 Syntax/Semantic Features of Harris Ada PDL

Harris Ada PDL uses standard Ada syntax extended with predefined templates
for embedding supplemenal design information in Ada specification parts.

The supplemental design information is written in the form of Ada comments
and each item is introduced by a keyword. Some of these annotations just flag
the following Ada text and others provide additional design details. Where
details are required, Harris Ada PDL defines the format that should be used
for each annotation. The specification templates also indicate where
additional descriptive commentary should be given. This commentary is written
in the form of Ada comments, but is distinguished by preceding the text with

*- the ":" character.

There is one major semantic difference between Harris Ada PDL and Ada. In
order to identify critical access and control logic, Harris Ada PDL introduces
some additional PDL keywords. Task and procedure entries are distinguished by
the non-Ada keywords ENGAGE and CALL, respectively; and OPEN, CLOSE, CREATE,
DELETE, READ, WRITE, GET, PUT, SEND-CONTROL, and RECEIVE-CONTROL are used in
input/output statements. Except for these extra keywords, Harris Ada PDL is
compilable.

The developers recommend using the PDL in conjunction with Ada in a split
page approach. This means that the PDL is moved to the right as a block of
commentary and Ada is then written to the left of the PDL. Following this
approach, compilation is not attempted until all of the non-Ada keywords have
been moved into Ada comments.

4.2.6.2 Automated Support Features of Harris Ada PDL

Harris Ada PDL is supported by several tools which are available only for
use on Harris projects. However, the documentation for these tools reveals an
interesting feature that deserves mention.

The ISOMET methodology recognizes that system designs undergo progressive
decomposition or partitioning during design and implementation activities.
When a component belonging to one partition of the system is decomposed
further, the internal components of the new design detail must be checked for
consistency. The Harris cross-reference tool has the capability to scan its
data base and perform a "vertical validation" to ensure that the design is
consistent after partitioning.

Documentation was also provided on some Harris automated support tools
.-. that are not Ada specific but nevertheless provide useful assistance in

drawing and plotting graphical design information.

4.2.6.3 Methodology Features of Harris Ada POL

Use of the Harris PDL is just one of the software development practices
defined by Harris's Integrated Software Methodology (ISOMET). This
methodology is an integrated set of policies, guidelines, and techniques that

41 support the entire software life cycle. The principles on 4hich ISOMET is

32



based include: documentation from inception through maintenance; software
analysis techniques based on top-down partitioning and progressive
elaboration; interface description tools; data description methods; and
validation and verification of the software throughout the life cycle.

K: The PDL is the tool used for communication of software requirements, and
preliminary and detailed software designs. It is also used as in-line
commentary during implementation. Hence it is an integral part of ISOMET.

4.2.6.4 Documentation Features of Harris Ada POL

The fact that the Harris PDL has been in use for several years is most
evident in the extent of the PDL documentation. In addition to complete
reference documentation, training material is also available.

The main PDL manual contains both reference material and a users guide.
The original version, developed in 1982, was updated in 1984 to bring the POL
into full compliance with MIL-STD-L8L5A. The manual includes recommendations
for style, design methodology, and translation of the POL text into ADA.
Appendices to the manual provide templates that can be used as guidelines for
achieving a uniform PDL style.

The Harris documentation uses a story board format in which each page
explains a point from the outline at two levels of detail. Thus the reader is
encouraged to move quickly through familiar material and focus only on what is
most relevant to each reading of the text.

4.2.7 JPDL (U.S. Air Force Systems Command)

* JPDL is designed for use in the reimplementation of the JINTACCS Automated
Message Preparation System (JAMPS). Hence the name JAMPS Program Design
Language, or JPDL. The JAMPS software will be implemented in Ada. However,
the JAMPS data base will be used by systems implemented in both C and FORTRAN.
This multilingual environment has influenced the design of JPDL only to the
extent that conversions from JPDL constructs to both FORTRAN and C are
provided. The PDL is primarily intended to develop Ada software.

JPDL was developed by SofTech for the U.S. Air Force Systems Command at
Hanscom AFB.

4.2.7.1 Syntax/Semantic Features of JPDL

JPDL is based on Ada but uses several major semantic extensions to provide
mechanisms for postponing design decisions, specifying abstract operations,
and expressing supplemental design information.

Deferred specification of computations is supported by a package called
JPDL-Value-Description-Package. The functions contained in this package take
the notation (+ " descriptive text") and return a legal value. This effect is
accomplished by overloading the "+" operator to yield each predefined Ada type

33

41
io



when applied as a prefix operator to a string. No calculation is performed,
instead this mechanism allows calculations to be described in English text.

JPDL allows the use of incomplete type definitions by means of a type
To-Be-Determined that is defined in a JPDL package. According to the
documentation, this type is defined as private so that no operations on
objects of type To-Be-Determined can be expressed in the PDL.

*Z JPDL also provides a abstract construct for looping on a sequence. This
was motivated by a similar facility in the language CLU. A predefined package
containing sequence functions is used to express this idea in Ada. For
example, to code the notion present in the following lines:

for all E in S loop -- where E is an element in
Proces-T-Element (E); -- a sequence of elements S

end loop;

a designer can write the following in JPDL:

while not End-of-Sequence(S) loop
Get-Next-Element (S,E);
Process-element (E);

end loop;

Similar provisions are made to describe periodic loops and streams of values
to, or from, external files.

Another predefined JPDL procedure provides for communication streams
between processes. This extension is intended to allow an abstract view of
intertask communication during design. Currently, only single tasks can
communicate through these streams. However, the documentation states that

. future work will address the issue of allowing more flexible networks of
communicating tasks.

All the JPDL extensions are compatible with Ada and, therefore, the design
text is compilable. However, they need to be removed or implemented in Ada

" during the coding phase of the software development.

4.2.7.2 Automated support Features of JPDL

* No tools are provided with JPDL.

4.2.7.3 Methodology Features of JPDL

JPDL was developed to support the preparation of Design Specifications in
* accordance with DOD-STD-1679, and its proposed successor DOD-STD-SDS. The

JPDL text can be used in the requirements section of a design document to
provide an additional representation of information traditionally expressed in
schematic and block diagrams.

*iT  JPDL is intended to address the issues of programming-in-the-small and
m treats data, data flow, and program control simultaneously. It extends the

34

I -*-.I;. ;



support provided by Ada for programming-in-the-large with additional notations
for concurrent programming.

Additionally, the developers of JPDL say it can be used in B-Level

Specifications, though this is not its primary purpose. Specification
languages and design languages serve very different purposes and are usually
structurally different. Consequently, the designers caution users that JPDL

is not a suitable vehicle for schematic or system level block diagrams, but
should be used for functional and nonfunctional descriptions of the software
to be designed, including data and interface definitions. Furthermore, at

this level, JPDL must be used in conjunction with a method that guides the
specification of requirements.

_" It is intended to support a variety of software methods, including Jackson

System Development (JSD), Ken Orr's Structured Requirements Definition,
Constantine/Yourdon's Structured Design, and the Higher Order Software (HOS)
method.

4.2.7.4 Documentation Features of JPDL

The documentation consists of a single reference manual. In order to
support the use of the PDL in a multi-lingual environment, the manual provides

conversion techniques showing how to transform any arbitrary PDL construction
into FORTRAN and C. Additionally, the manual provides conversion of the new

• JPDL loop abstractions and interface abstractions into Ada, as well as FORTRAN

and C.

In many cases, the JPDL document eschews fixed standards. Instead, it
. provides discussions on a variety of issues such as naming conventions and

documentation. This is intended to make it possiblk for individual projects
to develop their own standards that meet their special needs.

. As a result of the amount of information it contains, the JPDL manual is

very large and might be intimidating to new users of JPDL. However, in those
cases where only one of the target languages will be used, there is an easy

• way to resolve this problem. Projects using JPDL need to review the document

to establish a set of project standards, and this provides an excellent
opportunity for developing a project specific manual. This manual would
recomm~ended choices for standards and elaborate only those points applicable

to the target language used on the project.

4.2.8 LTH Ada P0L (LTH Systems, Inc.)

The LTH Ada PDL was developed under contract to the Center for Tactical
Computer Systems (CENTACS), U.S. Army Communication and Electronics Command
(CECOM). Originally intended as an interim guide for the use of Ada-based
PDLs, the report actually provides a definition of an Ada-based PDL.

The above remarks are intended to provide an historical perspective for
the PDL discussed here. They are not meant to imply that this PDL has been,
or will be, adopted in any CECOM policy.

35

",. -. . . . . . . .



4.2.8.1 Syntax/Semantic Features of LTH Ada PDL

The LTH Ada PDL is defined in the following manner in Section 3.4 of the
reference manual:

"The Ada Based POL is a top-down textual representation
of the system's software 'B5' and 'C5' specifications
utilizing the Ada Based compositional elements which are
expressed in the Ada Based (ABDDD or PPDLD and ABPDD or DPDLD)
documents' format based upon the project's required PDL type."

(Note: ABDDD = Ada Based Development Design Document
PPDLD = Preliminary Program Design Language Document
ABPDD = Ada Based Product Design Document
DPDLD = Detailed Program Design Language Document)

In effect, the definition says that the PDL is a function of the design
phase and the project type. LTH distinguishes two phases, preliminary design
and detailed design; and three project types, pure Ada implementations, mixed
Ada with other language implementations, and pure non-Ada implementations. In
total, the LTH Ada PDL actually consists of six recommendations from which one
is selected depending upon circumstances. However, the discussion here of
syntax/semantic features is primarily concerned with the "Ada Based
compositional elements" which are common to all six variations of LTH Ada
PDL.

The LTH Ada Based compositional elements consist of the following six
statement types:

1) Ada: statements conforming to MIL-STD-1815A. In addition, style
recommendations are given and the use of pragmas is discouraged;

2) Ada Based PDL: Ada statements extended by non Ada keywords: CALL,
SEND, SYSTEM, and SUBSYSTEM;

3) Machine Code: assembler level instructions. In the interest of
portability, the use of descriptive operation code names is
encouraged;

4) Other Language: instructions written in some language other than
Ada;

5) User Defined: statements following a project specific formalism.
6) English: narrative statements introduced by a special symbol (!!)

and ending in a semicolon.

Only the first of these compositional elements is standard Ada. Moreover, LTH
Ada POL discourages the option to mark PDL design statements as Ada comments.
Therefore, the PDL is not compilable.

0 4.2.8.2 Automated Support Features of LTH Ada PDL

No support tools are provided. The reference manual refers in several
places to a discussion of "Applicable Automated Tools". However, the
relevant section was omitted from the final report.

36



p.

4.2.8.3 Methodology Features of LTH Ada P0L

-. The LTH Ada PDL is intended for use in preliminary design and detailed
design. It recommends that PDL text is accompanied by Software Data Flow
Diagrams (SDFD) and Software Functional Hierarchical Diagrams (SFHD). The

'* SFHDs provide graphical illustration of the hierarchical structure of the
logical/program functional units. The SDFDs provide a graphical
representation of the data flows between the logical/program units. Although
these diagramming techniques are sometimes associated with particular software
methods, the recommendation of their use is not meant to endorse a particular
method.

*L LTH P0L text is designed to be consistent with various government
standards. These standards include: MIL-STD-483, MILSTD-490, DoD-STD-1679A,
ANSI/MIL-STD-1815A, and the proposed standard DoD-STD-SDS. Additionally, it
meets DARCOM 70-16R and CECOM Policy 8-81 requirements.

4.2.8.4 Documentation Features of LTH Ada PDL

The LTH PDL is documented by a single reference manual. Due to the
developers concern with military software procurement procedures, the manual

*Q discusses the various types of documentation standards and format guidelines
that may be required in a given project in unusual depth.

The text is also strong in the area of explaining the purpose of PDL and
its intended use in the software development process. A final noteworthy
feature is a section describing six predefined library units that the software
developer can use in the development of a design.

4.2.9 PDL/Ada (IBM Federal Systems Division)

PDL/Ada is administered by the Federal System Division's (FSD) Ada
Coordinating Group (ACOG). Prior to the development of P0L/Ada, the FSD had
trained approximately 2300 programmers in the use on a non-Ada POL, called
simply PDL. In an effort not to waste the experience these programmers had
already acquired, and to facilitate their learning a new design language,
PDL/Ada has been gradually evolved from P0L.

4.2.9.1 Syntax/Semantic Features of PDL/Ada

PDL/Ada conforms closely to Ada although there are some differences that
may be the remnants of the earlier PDL terminology. For example, PDL/Ada
allows concurrent assignments. These are groups of assignments that would
affect each other if executed sequentially. For example, SWAP(x,y) might be
written as two concurrent assignments x := y and y := x. Since these are not
semantically correct Ada, they are written as Ada comments. During coding,
the concurrent assignments are replaced by a set of assignments using
temporary variables, for example, t x; x y; y := t;. PDL/Ada also

37

6



deviates from Ada when the condition in a loop statement occurs in the middle
of the loop. Compare the following:

loop Ada PDL/Ada

loop loop

statement-group-1 statement-group-1
exit when exit when

condition; condition
statement-group-2 or else

end loop; statement-group 2;
end loop;

PDL/Ada provides several mechanisms to allow deferred design decisions.
There is a standard procedure, ST, and standard Boolean function, CD, that can
be substituted for statements or conditions respectively while the purpose of
the designer is contained in an adjacent comment. Additionally, the Ada
package STANDARD is extended to provide generic data types and operations for
stacks, queues, sequences, lists, and strings. This allows these object to be
treated as abstract types.

The PDL also allows postponing decisions on how to implement design units.
Initially, designs are structured in terms of a unit called a module. At some
point in the design process, the Ada program units PACKAGE, PROCEDURE, TASK,
or FUNCTION are substituted for each module.

Commentary in PDL/Ada is structured according to its positional
association with Ada statements. In addition to ordinary commentary, PDL/Ada
provides logical and descriptive comments. Logical comments are divided into
three types: invariant, status, and data. Guidelines are provided to specify
when each type of commentary is used, and the form the commentary will take.

The developers of PDL/Ada recommend that any expressions that deviate from
- Ada should be retained as comments when correct Ada code is written. In the

common situation that more than one line of Ada is written for a single line
of PDL, the developers recommend the use of the Ada BEGIN/END block to mark
the Ada lines generated from the P0L line.

PDL/Ada is not compilable until all non-Ada PDL lines have been replaced.

4.2.9.2 Automated Support Features of PDL/Ada

No automated tools are provided.

4.2.9.3 Methodology Features of PDL/Ada

POL/Ada is intended to be used with the FSD system design methodology. In
particular, the PDL is used to support the FSD modular design, data design,
and program design techniques.

Following these practices, the FSD approach defines four levels of design.

* The first level forms the user contract. It is concerned with using state

F 38

.. • .. .. .• .. .. .. ......... . ,. . . . . . . , , , . , . . . , , ,, , . .



machine models to design Computer Program Configuration Items (CPCIs). State
machine diagrams and POL/Ada are used to record the CPCIs. In Level 2,
functional and data design techniques are used to refine the PDL/Ada CPCI
descriptions into Computer Program Components (CPCs). The remaining levels
use stepwise refinement to elaborate the PDL/Ada functional and data designs.
The products at the third level are independent of the operational
environment, whereas Level 4 products are fully targeted to the operational
environment.

IBM FSD has used PDL/Ada in the B-Level and C-Level specifications defined
in DoD standards.

4.2.9.4 Documentation Features of PDL/Ada

The single large reference manual for PDL/Ada assumes a familiarity with
IBM FSD software development methodology and builds on this background to
describe the use of PDL/Ada features in design. The text makes good use of
examples to illustrate each feature as it is introduced. The methodology
makes use of predefined abstractions such as stacks, queues, sequences, sets
and lists. The use of these abstractions is explained and the appendices
define Ada package interfaces for the library packages corresponding to these
abstractions.

The manual also includes a BNF definition of the PDL syntax.

4.2.10 RN ADAP (SofTech, Inc.)

RN ADAP is the version of SofTech's ADAP used for the Regency Net program.
Consequently, the discussion here focuses on the differences between the two
Ada-based PDLs.

4.2.10.1 Syntax/Semantic Features of RN ADAP

RN ADAP belongs to the group of Ada PDLs that employ Ada syntax without
major modification. However, RN ADAP adds two significant semantic
constructions.

The first extension concerns the use of structured headers that precede
each design unit to capture supplemental design information. There are three
different kinds of headers: Procedure/Function Headers, Task Headers, and
Compilation Unit Headers. Each header identifies the information that must be
supplied for the types of design unit it accompanies. The examples given for
the headers indicate that information is recorded according to formatting
rules that not only make the information easy to read, but would facilitate
automated processing of the contents. Each line in the headers start with the
special symbol (--//). Consequently, they are ignored by the compiler.

39

r "." ., .".".. .".". . . . . . . ..'.",".." " -" - -- ' .". " "" . "''. .' .... ...-. ...'. . . ....-. .".-.-.' . " . .. "".-.-.- - ' -



RN ADAP differs from ADAP by introducing "abstract identifiers" to allow
postponing design decisions. According to the reference manual:

"These are syntactically-correct Ada
identifiers that represent operations
or definitions intended to (be) more
fully defined in alater iteration."

However, these abstract identifiers are undefined and, if compiled, would be
reported as errors by the compiler. Thus each abstract identifier must be
removed during coding.

4.2.10.2 Automated Support Features of RN ADAP

No automatic tools are provided for RN ADAP. An appendix to the reference
manual mentions techniques by which the "abstract identifiers" can be made
acceptable to the Ada compiler. An Ada compiler could then be used to check
the syntax and develop a cross-reference table.

4.2.10.3 Methodology Features of RN ADAP

RN ADAP was designed for use in both the preliminary and detailed design
phases. Like ADAP, its developers recommend that it is used with the
Structured Design method developed by Constantine and Yourdon.

4.2.10.4 Documentation Features of RN ADAP

The RN ADAP manual is derived from the ADAP manual described earlier in

Section 4.2.2.4. The manuals have in common the same approach to PDL and the
same concern for clear explanation.

There are semantic differences between ADAP and RN ADAP concerning
deferred specification of identifiers. Consequently, the two manuals provide
differing recommendations in several places. In addition, all of the examples
taken from ADAP have been rewritten in RN ADAP to reflect the RN ADAP style.

All other changes concern additional material that is found in the RN ADAP
manual only. Each feature of RN ADAP is coupled with an explanetion of how
that feature might guide the implementation of Pascal code. In addition, the
RN ADAP manual provides guidance on project naming conventions. Finally, the
manual closes with a large case study and shows how B5 and C5 specifications
are developed from the RN ADAP design text.

- 4.2.11 SAIC Ada POL (SAIC)

- -The design of SAIC Ada PDL was influenced by three primary objectives.
These objectives were the following: to capitialize on the software
engineering advances offered by Ada; facilitate the transformation of a design
into Ada code; and promote the reusability of software by establishing an Ada
POL library that contains PDL descriptions of common functions. Where those

40

6"

.-.-.-.. .. : . ..- - . .,- . . .. . . ..- . ,,, .. . ,.,, :c .



functions are implemented in Ada, the library also holds the corresponding Ada
packages.

4.2.11.1 Syntax/Semantic Features of SAIC Ada POL

SAIC uses standard Ada syntax for their Ada-based PDL and refers users to
the Ada LRM for syntax rules. However, the use of certain Ada language
features is deferred during design activities. The PDL also provides
predefined packages that allow treating message queues and stacks as abstract
structures. Unlike many Ada POLs, the SAIC Ada PDL is intended to be
compilable at all times. For this reason, all deferred design decisions and

%2. additional design remarks are entered as Ada comments in the PDL.

SAIC Ada PDL uses a standard header format, called a unit preamble, to
capture supplemental design information. Each line in the unit preamble
starts with the special symbol (--*). Consequently, the preamble is ignored
by the compiler, but easily distinguishable by the human reader. It records
configuration control information, identifies the requirements met by the
unit, and specifies the unit interface.

4.2.11.2 Automated Support Features of SAIC Ada PDL

In addition to the Ada PDL described here, SAIC markets a design language
known as SAI-SDDL. The Software Design and Documentation Language (SDDL) has
been used and refined over a period of time beginning with an initial
development at the Jet Propulsion Laboratory. SAI-SDDL is supported by an
automated tool and can be used with four languages, FORTRAN, FORTRAN-77,
Pascal, and SIMSCRIPT.

A set of Ada keywords has been developed for SAI-SDDL but the keyword set
has not yet been released. Consequently, it has not been possible to evaluate
the use of the SAI-SDDL tool set for SAIC Ada POL. Rather than omit the
features of the tool, SAI-SDDL is treated as a special case in the tabular
tool comparison in Table 4-6. In this table, the features of the SAI-SDDL
tool are listed but the status column shows that they are not yet
available for SAIC Ada PDL. Since the features are operational in another PDL
context, they may be available for the Ada-based PDL shortly.

-. Additional tools specifically intended for SAIC Ada PDL are under
development. These include an.automated configuration control manager, a
documentation tool to extract and list information from source code and
commentary, and additional text formatters.

* 4.2.11.3 Methodology Features of SAIC Ada POL

This PDL is intended to support the detailed design phase. The developers
recommend that it is used in conjunction with some design method, but do not
specify any particular ones. They also stress the importance of stepwise
refinement and structured walkthroughs.

41



4.2.11.4 Documentation Features of SAIC Ada PDL

SAIC Ada PDL is described by a single manual that incorporates tutorial
information integrated with examples, style guidelines, and a case study.
This manual also lists a few standard packages that can be assumed by the
designer.

Since SAIC Ada PDL uses the full Ada syntax, reference material concerning
syntax and semantic features is not required. The PDL user is referred
instead to the Ada LRM. The SAIC Ada PDL manual does provide two useful tables
that classify Ada features as 1) appropriate, 2) limited use, or 3)
inappropriate depending upon whether the design phase is in an early or late
stage of development. These tables capture succinctly the difference between
Ada as a PDL and Ada as a coding language.

A complete manual is available for the current SAI-SDDL POL automated
support tool. Some of this material will be applicable to the Ada-based PDL;
for example, the manual documents the extensive set of formatting directives
that control the flexible document generator.

4.2.12 Sanders Ada/PDL (Sanders Associates, Inc.)

This Ada-based PDL was designed to utilize Ada as much as possible, and
allow flexibility in the use of the PDL for any given development effort.

4.2.12.1 Syntax/Semantic Features of Sanders Ada/PDL

The Sanders PDL syntax comprises full Ada plus structured English
narrative. A structured English statement may be substituted wherever an Ada
statement, expression, or type definition is expected. Alternatively, the
abbreviation TBD may be used. This symbol TBD is treated as a reserved word.

Sanders Ada PDL cannot be compiled so long as the design text contains
TBDs or English narrative. However, the text is compilable when these are
replaced during coding activities.

4.2.12.2 Automated Support Features of Sanderss Ada/PDL

The Sanders Federal Systems group has developed the following tools: a
lexical/syntactic analyzer, a pretty printer, and a cross-reference utility.
A semantic analyzer is also under development. At present, no documentation
is available for these tools. Consequently, Table 4-6 shows only those tools
that seem to correspond in an obvious way to the categories of the table.

4.2.12.3 Methodolgy Features of Sanders Ada/PDL

.O The use of Sanders Ada/PDL is not restricted to any particuler software
development method. Indeed, one of the requirements for the PDL documentation
was that it should promote the portability of the PDL to a variety of methods.
However, the developers do discuss the use of Structured Analysis and
Structured Design to specify and design the software expressed in Sanders
Ada/PDL.

42

6O



r . - P - - - - - - - - - -. ,r n -

Use of the Sanders Ada/PDL is recommended for preliminary design and
detailed design activities.

4.2.12.4 Documentation Features of Sanders Ada/PDL

"-'" Only a reference manual is provided at present. The organization of the
manual follows exactly the outline of the Ada LRM. Therefore, the reader can
easily check which syntax features are supported by the PDL.

*At the time of this writing, no documentation has been released for the
automated tool support environment.

4.2.13 TI Ada PDL (Texas Instruments, Inc.)

The TI Ada PDL was developed to meet government requirements for use of
Ada-based PDLs and the developers of the PDL have paid considerable attention
to how the PDL can used with various government standards. This is reflected
in the both the features that the TI Ada PDL provides for capturing
supplemental design information and the PDL documentation.

*The PDL is currently undergoing review by the Ada Technology Branch,
Advanced Computer Systems Lab at Texas Instruments.

4.2.13.1 Syntax/Semantic Features of TI Ada PDL

At this time, the syntax of TI Ada POL follows Ada without deviation.
However, a package of TBD type definitions is currently being developed which
will allow postponing the implementation of data types during design. Since
the main concern of the PDL designers seems to be the smooth integration of
the PDL with Texas Instrument's project management and system design methods,
other major changes in syntax are unlikely prior to final approval.

TI Ada POL follows the Byron approach to the capture of supplemental
design information and annotations are expressed as structured comments
starting with the special symbol (--I). These structured comments are used to
express information on the relation of each design unit to the work breakdown
structure (WBS) of the project and other project-oriented data.

TI Ada PDL also uses structured comments to flag logical groups of Ada
design text, For example, one annotation flags the WITH clauses used to
import externally defined program units, and another precedes the declaration
of types and objects used in a global sense within a compilation unit.

Standard templates are provided to identify the different kinds of
supplemental design information that must be given for system, CPCI, CPC, and

• subprogram design units.

4.2.13.2 Automated Support Features of TI Ada PDL

The developers of TI Ada POL plan an extensive tool development program.
Not only will these tools cover most of the categories listed in Table 4-6,

* but there will be many additional tools. These other tools fall into three

43

7 %7 %, .



general categories: structure analysis tools, requirements tracking tools,
and project visibility tools.

One of the tools planned by Texas Instruments is a text conversion tool.
There are no statements in TI Ada PDL that require text conversion owing to a
variance with Ada syntax. Instead, the purpose of this tool will be to
convert Ada commentary into comments acceptable by processors for other
languages such as C or Fortran.

4.2.13.3 Methodology Features of TI Ada PDL

The TI Ada PDL was developed for use in the development of DoD software
and this is reflected throughout the design and documentation of the PDL, In
particular, it is designed to meet the government visibility requirements
defined in the Work Breakdown Structure (WBS) and can support any of the three
(WBS) formats defined in MIL-STD-881A.

Additionally, the PDL is intended to support all the contemporary design
concepts, with particular focus on abstraction, decomposition, information
hiding, stepwise refinement, and modularization. It provides support for four
levels of software system description:

1) Software System.
2) Computer Program Configuration Items (CPCIs).
3) Computer Program Components (CPC).
4) Subprogram.

The software developers at Texas Instruments take a realistic view of the
software life cycle and assumes a cyclic development process. Thus, a project
may start with the development of an Advanced Development Model (ADM). This
allows the feasibility of the system to be investigated and provides a
prototype that can be analyzed. The information gathered from the ADM is then
used to develop the Engineering Development Model (EDM). The EDM is eventually
fielded as the final system.

Two design processes are recommended for designing the software in the
ADMs and EDMs. These are the Figure-8 Design Process and the Three-Leaved Rose
Design Process. Both define a number of iterative steps and milestones. The
TI Ada PDL can be used to express the designs developed using these processes.

4.2.13.4 Documentation Features of TI Ada POL

Currently, only a preliminary form of the reference manual for TI Ada PDL
is available. The table of contents indicates that the completed manual will
exhibit all the documentation characteristics outlined in Section 3.2.3, but
much of the corresponding text has yet to be written.

* The current version of the manual includes an extensive explanation of
software development methodology and the proposed relationships between the
methodology, PDL, and tools. It provides an explanation and justification of
the development process that is suitable for a knowledgeable reader, but does
not constitute instructional text for a new user. However, it can be expected
that suitable introductory material will be provided when development of the

*PDL is more advanced.

44.......................................--L-.-
-



4.2.14 TRW Ada PDL (TRW)

Experience with an earlier non-Ada PDL was used to guide the determination
of the requirements for TRW's Ada PDL. Use of the earlier Caine, Farber,
Gordon (CFG) PDL had resulted in many benefits, including a 15% productivity
gain. The new Ada-based PDL is designed to keep the syntactic simplicity of
the CFG PDL, but include those Ada design features that support the
preliminary and detailed design phases.

4.2.14.1 Syntax/Semantic Features of TRW Ada PDL

TRW Ada PDL differs lexically from Ada in that Ada PDL statements are
significant only at the start of a line. If a line does not start with a
statement, it is assumed to contain only narrative design text.

Designs in TRW Ada PDL are subdivided into units which may be declared as
PROCEDURE, FUNCTION, TASK, and PACKAGE or which may be declared as a MODULE or
as a FRAGMENT in order to defer a decision on the kind of subunit. Following
the philosophy of Ada, the subunits consist of a specification and a body.
Unlike Ada, the body parts of nested units may not be nested together.
Instead, the IS SEPARATE alternative must be used to separate unit bodies.
The use of IS SEPARATE facilitates the enforcement of separation of design
levels.

The specification part consists of a subunit name, parameter list, and
type and object declarations. The names and parameter lists follow Ada syntax,
The remaining declarations either follow Ada syntax or use a narrative
description. Incomplete type definitions are allowed. Deferred name
declarations are allowed; a 'deferred name' is one used in a recognizable
context (e.g., type, object, and unit names) where Ada would require prior
declaration; this leads to implicit declaration in Ada PDL and is regarded as
a recognized name for further design analysis.

The body part consists of design narrative that is organized by PDL
keywords. These keywords provide the full structured constructs of Ada. Within
the design narrative text, the PDL processor will recognize and report the use
of defined object names and types.

The visibility rules of TRW Ada PDL are the same as Ada. However, the PDL
also provides an IMPORT declaration which is similar to the combined effect of
WITH and USE.

" /Although in its broadest definition, the TRW Ada PDL is not directly
compilable, it can be used in a compilable form with no loss of capability by
imposing certain restrictions on its usage.

* 4.2.14.2 Automated Support Features of TRW Ada PDL

The TRW Ada POL is currently supported by a tool set which, using a build-
ing block approach, can be configured as a single tool or as a group of tools
which can execute concurrently. If desired, the user can disable some of the

* documents normally produced on a single pass over the design code. The sup-
*I port tool also maintains a library of design modules that have passed syntax

45

.. . ...



tests. TRW emphasizes the library aspect of the tool as the key to multiple
run execution efficiency, project coordination, and future software design
reusability.

In view of the non-compilability of TRW Ada PDL, an initial translator
* would be useful. Such translators are under development for Fortran, Jovial,

and Ada. Since the PDL syntax omits Ada features that are not design oriented,
there is no need for a design level enforcer. Nevertheless, there are plans
to produce a "Deferred-Development Report" which may be useful for testing the

"' degree of completion of a design. Additional tools under development include:
a global interface consistency checker, graphical structure chart tools, and
C5 specification generators.

A rehost of the VAX/Unix tool software to a VAX/VMS operating system is
in progress.

4.2.14.3 Methodology Features of TRW Ada PDL

TRW Ada PDL is specifically designed to provide support for both the
preliminary and detailed design phases in the software life cycle. Though the
PDL is currently intended to be independent of any particular software design
approach, TRW is undertaking several activities that will provide guidelines
for using the PDL with certain methods and methodologies. For example, one of
TRW's contracts is addressing the integration of the Ada-based PDL with TRW's
Distributed Computing Design System (DCDS) methodology.

The PDL can be used to develop documentation in accordance with various
government standards.

4.2.14.4 Documentation Features of TRW Ada PDL

The TRW Ada PDL is described in a single, comprehensive document. The
organization of the material and the accurate table of contents simplify

reference to any given topic.

In Section 2 the major reference section, the TRW m~nual combines
tutorial material, reference material, and PDL examples in a way that should
be effective in teaching the use of the Ada PDL. A formal definition of the
PDL grammar is given in an appendix.

The table of contents of the manual reviewed for this survey lists a few
sections that are not included in the text. These sections should appear in
future updated versions. The material in question includes design case
studies and language compatibility and translation suggestions for Ada,
Assembler, C, CMS-2, COBOL, FORTRAN, JOVIAL, and Pascal.

S

. 4.2.15 WIS Ada PDL (WWMCCS Information System)

The WIS Ada POL Standard provides guidelines for using an Ada-based PDL in
" . the development of software for the World Wide Military Command and Control

System (WWMCCS) Information System, or WIS. Ada-based PDL are intended to be
. used for the development and support of WIS software in accordance with the

46

o .............-



standard. The procuring organization is expected to tailor the standard
appropriately for each individual acquisition.

This PDL was developed for the WIS program by the Strategic Systems
Division of GTE Government Systems Division. Currently it is the only PDL
that provides special features to capture information specifically pertaining
to the reuse of designs and measurement of various software attributes.

4.2.15.1 Syntax/Semantic Features of WIS Ada PDL

WIS Ada PDL uses Ada syntax and adds annotation through structured
commentary. Its overall approach is therefore similar to Byron. WlS Ada uses
the symbol (--%) to introduce lines containing annotation keywords and the
symbol (--j) to precede lines that provide the details appropriate for eech
annotation. Some of the information given in these structured comments is
formatted to facilitate automated processing. Standard templates are provided
to identify which pieces of supplemental information should be recorded with
each type of Ada program unit.

An interesting innovation is that the WIS Ada PDL is concerned with
providing information that can facilitate reuse of design units. This has two

4 consequences. One is that an initial set of package classification is given.
These classifications are compatible with an object-oriented design approach
and identify a package as: a declaration group, an operational abstraction, a
state machine, an abstract type, or an abstract object. Standard templates
are given for these package classifications.

The second addition made to promote reusability is the provision of a
notation for specifying package keywords. These keywords are chosen from a
common dictionary and are intended to associate different packages that have
properties in common. A keyword list can be used as a search list to identify
packages that meet certain needs.

The WIS Ada PDL also provides a set of structured comments that can be
used to collect software metric data. This data is primarily for use in
applying Albrecht's Function Point Complexity Metric, but can be used for
other complexity measures.

The need for structured comments that support verifying whether a design
text conforms to a security model in a security sensitive application is
identified. Some suggestions as to appropriate annotations with the
capability for expressing first order logic are given, but no actual syntax
rules are provided.

Additionally, the PDL provides a construct that allows grouping logically
related definitions and associating a name with the group. The construct is
implemented as a structured comment and can include additional types of
structured comments which describe the properties common to the definitions
enclosed by the construct.

A package of To-Be-Determined expressions and conditions is provided to
allow expressing deferred decisions.

47

14A%

.- . ..

"_31Q{;L.



4.2.15.2 Automated Support Features of WIS Ada PDL

The WIS Ada PDL Standard describes a set of tools that will be developed
or purchased to support the use of WIS Ada POL in the development of WIS
software. At present, these tools are not available.

4.2.15.3 Methodology Featurees of WIS Ada PDL

The WIS Ada POL is independent of any particular design method. However,
the similarity of the PDL to Ada is expected to result in the application of
those software engineering concepts embodied in Ada.

The standard recommends using Ada-based PDL not only for the preliminary
and detailed design phases in the software life cycle, but also for system
design. It presents a generalized program design model consisting of three
phases: preliminary, detailed, and algorithm/data design. Contractors
developing and supporting JIS software are expected to map this design model
to their own design method.

4.2.15.4 Documentation Features of WIS Ada PDL

The documentation for WIS Ada PDL consists of a single document that can
serve both as a tutorial and a reference manual. The currently available
document is intended to guide the use of the POL on several software projects
contributing to WIS. The individual projects may want to create two separate
documents for internal use, one containing reference material for answering
questions in every day use, and the other containing tutorial material for use
during training. Although the present document contains some examples, more
cases need to be treated to illustrate all of the points of the PDL usage.

A strong point of the WIS Ada PDL manual is its clear and well reasoned
discussion of the purpose of the PDL and its relationship to design
methodology. The manual describes the role POL plays in the software life
cycle as well as more detailed issues such as recommended PDL conventions for
object-oriented programming.

4.2.16 XAda (GTE Sylvania Systems Group)

The philosophy of XAda is to "design a little -- code a little". The PDL
requires execution of design text to provide dynamic design checking and
assessment of expected resource loading. Other objectives for XAda are to
support automated extraction of design commentary for documentation purposes,
and to allow utilization of existing and planned commercially available tools.

4.2.16.1 Syntax/Semantic Features of XAda

XAda is an example of an Ada-based PDL that uses full Ada syntax without
modification. In fact, XAda is the result of a survey of Ada-based POLs that
concluded "The Ada language could be used per se as a design language with no
extensions or restrictions."

48



XAda extends Ada with mechanisms that allow capturing supplemental design
information in a manner similar to Byron. Each extension consists of the
special symbol ('-I), a keyword, and English narrative.

4.2.16.2 Automated Support Features of XAda

A tool called SLICE, the Source Language Independent Comments Extractor,
is under development for VAX hardware. The Byron tools (Section 4.2.4.2) are
also being considered for use with XAda.

4.2.16.3 Methodology Features of XAda

The developers of XAda intend the name "XAda" to refer to more than just a
design language. Instead, XAda is regarded as a method for using Ada as a
design language.

The XAda approach defines three steps for the design process: high-level
design, detailed design, and implementation. The particular design techniques
and strategies used with the PDL are left to be chosen by the project team.
The examples given of such techniques are data flow diagrams and structure

*l charts. This flexibility is intended to allow an appropriate selection to be
made for each project.

4.2.16.4 Documentation Features of XAda

The documentation presently consists of an article to be published in Ada
Letters. The article describes the method of use of the PDL. The syntax of
the PDL is identical with Ada. Therefore the Ada LRM can serve as a syntax
reference manual.

9.4

S

S

• " 49

0O



5.0 COMPARISON OF Ada-BASED PLS

When these Ada-based PDLs are reviewed together, one immediately receives
the optimistic impression that each developer is participating in a movement

• - within software engineering that is widely accepted as productive and
promising. On a detailed level, there is considerable divergence in the form
the POLs take. In one sense this disagreement is natural since the field is
addressing several research issues. On the other hand, the differences are
largely caused by genuine problems that have not been solved in a universally
satisfactory manner.

This section starts with some discussions of how Ada-based PDL developers
are responding to some of the major problems in this field. The last part of
the section provides a more detailed comparison of the POLs following the four
major areas of interest identified earlier.

5.1 Increasing Productivity

The earlier sections of this report have given a sense of the unifying
aspects of Ada-based PDLs. At this point it is timely to discuss one of the
major problems in software development and the varying responses of the PDL
developers.

This first problem concerns productivity. Software seems to be one of the
most expensive products in today's market place. Even so, the demand for
software products is increasing every year and various projections indicate
that there will soon be an acute shortage of software developers.

Consequently, one of the major concerns of the technical community is to
find ways of developing software cheaper and faster, or in other words,
increasing productivity. Of course, productivity is not simply a matter of
increasing the speed with which software developers produce code. Other
issues, such as quality, are inextricably intertwined. For example, saving
several man-years of effort is of no consequence if the final product fails to
satisfy reliability and security requirements. On the other hand, a high
quality product means that there are fewer errors to fix and the product will
be completed sooner.

The question now arises: How will the use of PDLs impact productivity in
design activities? Only one developer, TRW, ventured an estimate of the
possible gains. TRW states that they have found that PDL use improves their
productivity by 15%. (This figure was given in reference to the earlier
non-Ada PDL.) This amount is economically significant in a large project.

*, Nevertheless, it remains small compared to such productivity factors as
programmer/designer experience, the support environment, and clarity of the
original requirements specification. In particular, the Ada-based PDL
developers discuss the issues of training and translation of the design text
to Ada code.

50



The reaction of one group of Ada-based PDL developers, which includes TRW,
IBM, and MAYDA, has been to impose Ada syntax on the PDL which has served the
organization well in the past. In this fashion, the organization's investment
in training is preserved and the productivity return from the PDL is more
certain.

A second group Ada-based PDLs, which includes Byron, GDADL, TI Ada PDL,
and WIS Ada PDL, uses the Ada syntax as a starting point for developing a PDL.
During the transition phase when Ada skills are still being developed, an
organization using one of these PDLs may have difficulty because Ada is
unfamiliar to the designers. However, Ada training will usually be required
in any case for coding activities, so that the introduction of Ada at the
design phase is arguably beneficial.

In the context of the productivity problem, one might also include in this

second group those PDLs which follow Ada but allowed unrestricted use of
English narrative and TBD expressions. Although these PDLs are not immediately
compilable, they share the same attitude toward the training/productivity
issue as PDLs in the second group. Members of this latter subgroup include
ADAP, BTO, RN ADAP, and Sanders Ada PDL.

In a third group there are PDLs which introduce significant variations
from Ada without appearing to base the syntax on a previous POL with a large
existing community of PDL users. Often, these extensions are stated with
conviction, for example, that procedure and task calls must be discriminated
in the code or that the designer needs non-Ada abstractions such as a loop on
abstract sequence types. However, from the productivity point of view, there
seems to be a burden of proof placed on this third group to show that there is
a net productivity gain after training designers in the use of Ada extensions.
Examples in this group include JPDL and LTH Ada PDL.

With the current lack of empirical data, it is difficult gain after
training designers in the use of Ada extensions. Examples in this group
include JPDL and LTH Ada POL.

Additionally, PDLs which adhere to Ada syntax and semantics can facilitate
the transition from design to Ada code, and this can increase productivity.
However, when Ada is not the implementation language, these gains could be
lessened or even reversed.

5.2 Increasing Reliability

To be reliable, a software system must be free from error and always
perform as expected. Therefore, a PDL should help to prevent errors being
made during design and coding activities, and help to ensure that the design

0 not only meets requirements, but includes proper error handling to cope with
any failures during operation. In its simplest terms, this can be reduced to
validation and verification.

51

'--i---. .- :....- -.. -......................-.-.. "..-,-...........-..."..-..."--........ .- - .- '?'Z. T- .--



Validation of a PDL design can be supported by identifying the
requirements met by individual design units. Almost half the POLs provide
mechanisms that can do this. Information that facilitates verification of the
design text is less often captured. harris ada pdl and lth ada pdl allow the
specification of testing requirements; and adap, jpdl, and rn adap all provide
mechanisms for stating preconditions and postconditions for design units, jpdl
also allows specifying task communication protocols and identifying modules
that are used concurrently, which is also useful for verification.

Information about timing and sizing constraints, hardware interfaces, and
software environments can support both validation and verification. ADAP,
Byron, Harris Ada PDL, JPDL, and RN ADAP all express timing and sizing
constraints. While only ADAP and RN ADAP provide mechanisms for stating
hardware interfaces. BTO Ada PDL and JPDL capture information about the
software environment in which the eventual code will execute.

The error handling required by a design module can be highlighted by
identifying the exceptions raised or handled by a design unit, and the error
messages it produces. Information for the first of these, exceptions, is
captured by several PDLs. Whereas only Byron provides a facility for
specifying the error messages issued.

Putting aside these detailed considerations of supplemental information,
the current set of Ada-based PDLs are a far step away from supporting full
validation and verification of designs. Indeed, when appropriate information
is captured, such as the requirements met by a design unit, there is no
attempt to fully use this by automating the bracking of requirements. In
general, these PDLs could be extended by adding notations that would permit
some types of design analysis, for example, checking for freedom from
deadlock. Additionally, verification languages like ANNA could be included in
any PDL that adheres to Ada syntax and semantics.

Similarly, use of a compilable Ada-based POL introduces the ability to
execute a design and gather information for assessing the expected operation
of software that will be produced. This topic was only discussed for XAda,
and even then the full potential of an executable design was not exploited.

Admittedly, these are relatively new areas in software engineering, but
even so, the opportunities offered by Ada-based PDLs for increasing software
reliability seem to be largely ignored.

5.3 Promoting Reusability of Software Designs

The current approach to developing software is to build each new system
from scratch. The software developer is one of the few professionals who does
this. Alternatively, if a software product is largely constructed from
existing parts, not only will productivity be increased, but the use of proven
software will improve quality also. This is also a new area in software
emgineering and is the focus of many research efforts. While it is still
uncertain what impact this consideration will have on the design process as a
whole, there are some ways in which a POL can increase the ease of reusing
software designs.

52

• " " "-"- -'" " '" " "', -" " " "' '" "- .. ,'.. ,'. , -,' " . .'.',,' .'.. -'.. ... ... ,.. . .,. ." ".. . ...-. .-.. . . . . . .-.. .'



To some extent, Ada itself addresses this issue and those PDLs that
encourage use of the Ada package and generic features will benefit
accordingly. The Ada-based POLs discussed in this report all support
packages, even those which do not follow Ada closely in other respects.
However, the TI Ada PDL developers recommend deferring the use of generics
until the code and unit testing phase.

The provision of a library manager for building and maintaining a library
of reusable designs also facilitates reusability. Byron and TRW Ada PDL both
provide library managers which can be used to maintain a library of reusable
designs. In the case of TRW, the library manager is specifically intended for
this purpose.

Reusability of PDL designs is emphasized by SAIC Ada PDL, TRW Ada PDL, and
WIS Ada PDL. However, WIS Ada PDL is the only one that explicitly includes
features to promote reusability. This is done in two ways. Initially, the
PDL provides a scheme for categorizing package design units and provides
templates to indicate the kinds of supplemental design information that should
be given with each category of package. At the moment, only five categories
resulting from an object-oriented design approach are specified, but the
intention is to expand this in the future. Secondly, WIS Ada PDL provides an
annotation for recording keywords that identify the essential properties of
packages. This allows a data base of package keywords to be built which can
be searched to identify packages that perform a particular function or relate
to a certain topic.

5.4 Minimizing Support Costs

Another major problem facing the software community is post-deployment
support. If overall software costs are examined, it can be argued that the
development productivity issue is secondary in importance to the support cost
issue. In this case, the main thrust of Ada-based PDLs should be to ease the
support burden. There are several ways in which a PDL can do this. It
should: 1) identify the requirement(s) that are met by each design unit; 2)
explicitly record the dependencies between design units; 3) structure the
design units to hide unnecessary information; 4) document the design to allow
rapid and accurate modification; and 5) ensure that inconsistencies do not
develop between the design and code.

The above issues are addressed individually in the following subsections.
However, they are not presented as the only ways in which a PDL can facilitate
software support. For eample, the ability to include a change log, overview
descriptions, technical references, or preconditions and postconditions are
always helpful.

5.4.1 Identification of Requirements Met

Explicit specification of the requirements met by each design unit can
support carrying out software modifications in two ways. It helps to identify
which design units must be changed to correspond to a change in the
requirements. It also helps in validating a design module after it has been
modified to ensure that it still satisfies the appropriate requirements.

53

-.. .----. ..-".. - .



Several of the Ada-based PDLs provide mechanisms for capturing information
about the requirements met by each design unit. These are ADAP, Harris Ada
POL, RN ADAP, SAIC Ada POL, TI Ada POL, TRW PDL Ada, WIS Ada PDL, and XAda.
The general form of the information recorded is a reference to the relevant
chapter and paragraph in the requirements specification document.

It is also desirable that the PDLs provide a facility for recording any
timing and sizing constraints that are imposed by the requirements and that
impact individual design units. This is useful information for both
development end support activities. From the support viewpoint, it can help
to explain certain aspects of a design and identify constraints that must
still be satisfied by the modified design.

5.4.2 Recording Dependencies Between Units

All too frequently, when a change is made to one design unit, several
others also require updating. Consequently, it is desirable that the PDLs
annotate each design unit with a list of all external data entities and
program units that are referenced by the design unit. ADAP, Byron, Harris Ada
PDL, RN ADAP, TI Ade PDL, WIS Ada PDL, and XAda all provide this capability,

*at least partially.

Cross-reference tools can also be used to provide this information and of
all the tools that are currently available for use with the Ada-based PDLs,
this tool is the most common. The PDLs that are supported by a
cross-referencer are ADA/SDP, Byron, GDADL, Harris Ada POL, SAIC Ada PDL,
Sanders Ada POL, and TRW Ada PDL. A cross-referencer is also under
development for TI Ada PDL.

* 5.4.3 Hiding Unnecessary Details

To a large extent, the hiding of unnecessary details is the result of good
use of the software engineering principle of information hiding in conjuncion
with the principles of localization and modularity. Therefore, the design
method used in conjunction with the PDL is important. Of all current design
methods, the one most attuned to this issue is the Software Cost Reduction
Method developed by Dave Parnas. Although none of the Ada-based PDLs
addressed in this survey mentioned this method, there is no reason why any of
them cannot be used in conjunction with this, or any other method.

. . Information hiding is another benefit of adherence to Ada. This is
because the specification parts of Ada program units were designed to enforce

* hiding of the implementation of data types and operations on those types.

The provision of design abstractions can facilitate making modifications
to a sofware design by postponing design decisions. Not only does this help
to limit the amount of information the software developer must review in order
to understand a design, but it also increases the likelihood of a change being
limited to the code and not affecting the design itself. Most of the

54



Ada-based PDLs provide mechanisms for postponing the specification of the
implementation of types, The only ones that do not are BTO Ada PDL, Harris Ada
PDL, and XAda. Similarly, the PDLs generally provide mechanism for postponing
the implementation of operations. In this case, the PDLs that do not are BTO
Ada PDL, Byron, LTH Ada PDL, TI Ada PDL, and XAda.

In those cases where no special features are provided for postponing
decisions, the Ada comment can be used. However, this is likely to result in
a host of error messages if an attempt is made to use the compiler to check
the syntax of the design text. Alternatively, software developers could
provide their own package of TBD definitions.

5.4.4 Documenting the Design

Good documentation of the design helps the software developer to
understand the purpose of the current design and determine how it needs to be
changed. Automated document generators are useful for developing accurate and
cost-effective documentation. They also help to update the documentation once
changes have been made. The only PDL that has such a tool is Byron, although
the developers of TI Ada PDL, TRW Ada PDL, WIS Ada PDL, and XAda plan to make
these tools available in the near future.

Another tool that is useful in this context is a design annotation
summarizer. This tool extracts supplemental design information from POL text
to produce a report. Byron and GDADL currently have this tool, and it is
among those recommended for WIS Ada POL.

5.4.5 Preventing Inconsistencies

Modification is likely to occur during all phases of the software life
cycle and can easily lead to inconsistencies between PDL design text and code.
The type of consistency problem that arises will depend upon whether the
project keeps separate PDL and Ada code units. If so, changes must be made to
both. Ideally, methods should exist to validate the consistency of the
different units. Alternatively, the design unit can be progressively refined
until the Ada code is produced with the PDL still embedded as commentary.

Most PDLs can be used with a single unit approach. For example, PDL/Ada
recommends that each POL line should be retained as a comment if it is to be
replaced by code. If coding requires several statements for each PDL line,

PDL/Ada even describes how the Ada lines should be grouped to show clearly the
association with PDL statements.

However, when this single unit approach is used, a new problem arises;
namely, how shall new staff become familiar with the design of the system
after the PDL has been encrusted with implementation code? This can be
resolved by extracting a design summary for use in explaining the system to
new staff. The Ada-based PDLs that define an extractable type of commentary

*offer a significant advantage in this case. Such PDLs include Byron, GDADL,
I TI Ada PDL, and WIS Ada PDL.

55

• .1A



5.5 Comparison of Detailed Features

This subsection compares the Ada-based PDLs on the basis of the
characteristics recorded in the tables in Section 4.1. The following

--. discussions also serve to summarize the current state-of-the-art in this
K. field.

5.5.1 Comparing Syntax/Semanntic Features

In Section 5.1, Ada PDLs were compared with respect to their underlying
syntax. In terms of the larger scope of design language features, there is
remarkable agreement among the PDLs that Ada program units (packages,
procedures, functions, and tasks) are suitable as units of design. There are
some minor innovations in the design units but the mapping to Ada program
units is usually clear. Whereas design units are used to structure the
abstract elements of a system, partition work in a team development effort,
and hopefully promote reusability, program units primarily address
compilability issues. However, the commonality between design units and
program units is not surprising. Instead, it reflects the concern of the
Ada-based PDL developers to extend the advantages of Ada back into the design
activiy and facilitate the transition to Ada code.

The trend in Ada language coverage seems to be to use full Ada syntax and
defer the use of implementation oriented or lowlevel language features. Both
PDL/Ada and SAIC Ada/PDL identify the specific Ada features that are suitable
for use at different design levels. The remaining POLs generally give
guidelines as to the type of features that should be deferred.

In the few cases where a PDL uses a restricted Ada syntax, the language
features omitted are the USE clause and the pragmas INLINE and SUPPRESS.

The majority of PDLs provide mechanisms for postponing specification of
the implementation of data types, although mechanisms for postponing the
implementation of operations are less frequent. The mechanisms range from the
provision of packages of different TBD types, to use of a simple reserved word
"TBD." Roughly half are compatible with Ada.

Among all the Ada-based PDLs, only GDADL, PDL/Ada, Sanders Ada PDL, and
TRW Ada PDL do not provide annotations for capturing supplemental information.
However, since most annotations are written in the form of Ada comments, there
is no reason why these POLs cannot adopt annotations defined in the other
PDLs.

Most of the mechanisms for expressing supplemental design information are
* associated with templates used at the beginning of each design unit. The

templates contain slots named by keywords where the designer inserts various
attribute values. In semantic terms, each template is one long sentence with
many clauses. For ease of use, the templates generally resemble
fill-in-the-blank forms. Again, PDLs that do not define their own templates
could borrow from those PDLs that do.

56

. .... ... . ...... . .. . ....-.- -



In those cases where the information captured by the templates is
structured, tools could be developed to scan the design templates to analyze
and summarize the named attributes. As yet, no PDLs provide a tool
specifically intended for this purpose. However, some of the report
generators could be used to produce a summary of the design annotations. Of
those PDLs that do process annotations, only XAda allows the user to define
additional keywords specific to his needs.

5.5.2 Comparing Automated Support Features

At the moment, the most popular tool appears to be the cross-reference
generator. The listings from this tool are intended to locate where entities
are defined and used. The activity of tracking down the location of a
definition occurs so often during design that two of the pretty printers,
those for ADA/SDP and GDADL, actually place the references on the same page as
the PDL design text.

The least popular tool appears to be the syntax directed editor. Only
ADAP and WIS Ada PDL plan to provide this tool. There are no plans to develop
tools that can check the syntax of design text entered without the benefit of
these special editors. Of course, it should be noted that the Ada compiler
can be used to check syntax for those Ada PDLs which are directly compilable.

In addition to formatting design text, pretty printers recognize the basic
block structure of a design and can be used to identify major structuring
errors. The PDLs that have pretty printers are ADA/SDP, Byron, Sanders
Ada/PDL, and TRW Ada PDL. While SAIC Ada PDL, TI Ada PDL, and WIS Ada POL
plan to provide this tool in the near future.

Several POLs provide dictionary generators. The primary purposes of this
" tool are to facilitate completeness and consistency checking and support
• .documenting the design. However, a dictionary generator can also help software

developers and reviewers locate postponed decisions. Many Ada-based PDLs
distinguish postponed decisions with reserved words. Some also annotate
deferred definitions with some sort of narrative. The cross-reference facility
can be used to find the position of the reserved words and narrative in the
design text, and summarize this information in a data dictionary. Dictionary
generators are now available for ADA/SDP, Byron, and TRW Ada PDL. They are
also planned for TI Ada PDL and WIS Ada PDL.

. One observation concerning dictionary generators is that many PDLs will be
used in conjunction with a methodology that encourages the immediate
development of a data dictionary. In these cases, the dictionary is usually
partially developed before the PDL is introduced to the project. Automated
support for checking the consistency of the early project dictionary and the
PDL dictionary would seem desirable. Hopefully, tools to accomplish this will

* be provided in the near future.

Only Byron is currently supported by a flexible document generator. This
is a very useful tool that can greatly ease the task of producing
documentation, and keeping the documentation up to date. WIS Ada PDL and
XAda also plan to provide document generators, and the developers of TI Ada
PDL are developing a document generator that can produce parts of a

57

.



+I

XAda also plan to provide document generators, and the developers of TI Ada
PDL are developing a document generator that can produce parts of a
MIL-STD-490 C5 Level Specification.

A surprising absence in the present offering of tools is the lack of code
generators for those PDLs that are not compilable. Although this situation
may reflect a principled decision to keep design and coding separate, at least
a complementary effort to develop verification tools that could check the
consistency of Ada code and PDL would seem to be in order.

5.5.3 Methodology Features

PDLs are largely method independent and so may be used with a variety of
design methods. However, a PDL is essentially a tool for expressing a design
and it is important that it is used in conjunction with some method that can
lead the software developers through the design process.

GDADL, Harris Ada PDL, and PDL/Ada were all specifically developed for use
with an in-house software development approach. The documentation for these
PDLs includes materials discussing how they should be used with the relevant

. method.

Byron, JPDL, LTH Ada PDL, and TI Ada PDL all offer some guidance for using
the PDL with a particular method. Whereas ADAP, RN ADAP, and Sanders Ada/PDL
recommend the use of Structured Design, but give no suggestions on how the PDL
is used in this context.

The Ada-based PDLs are similar in terms of life cycle coverage. In this
report, it is a condition of their classification as Ada-based that they
support the detailed design phase in the software life cycle. With the
exception of BTO Ada PDL and SAIC Ada PDL, these PDLs are also intended for
use during preliminary design.

Harris Ada PDL is additionally used for expressing software requirements.
This is unusual because requirements specification languages are intended to
portray a different type of information and, consequently, are often
structurally different to design languages. However, the Harris Corporation
uses their PDL in conjunction with a fairly sophisticated development
methodology and this encourages correct use of the PDL.

The developers of JPDL state that this PDL can be used to express some of
the contents of a Mil-STD-490 B-Level specification, but say this should be
done cautiously and provide some guidelines for the process.

Finally, the WIS standard encourages use of the PDL for both
system design and software design activities. Though its use in software
design is discussed in depth, no guidelines are given for its use at the
system level.

58

"A



5.5.4 Documentation Features

Ideally, documentation should be helpful and appropriate to each person
involved in a design project, no matter what the title, job description, or
experience level of that person may be. In practical terms, there should be
several documents keyed to different interests and needs. At present, all of
the developers have a reference manual or are able to point to the Ada LRM as
a reference. Thus, all developers have defined their Ada-based PDL and this
is a good start. However, the successful introduction of Ada-based PDL on
projects will depend on the development of additional kinds of documentation.

At the moment, the developers provide the most complete documentation for
those aspect of PDL that are of most immediate concern to them and have
deferred other writing tasks. Thus for Byron, the manual emphasizes the
machine processible aspect of PDL. The Harris, IBM, and TI manuals emphasize
the application of the PDLs to their respective methodologies. While RN ADAP
and JPDL devote space to the translation of PDL design text to non-Ada
lanaguages, and the LTH and WIS manuals explain the relation of PDL to
government contract procurement procedures. Ideally, when the developers
finish their job, each PDL will have documentation that suffices for all
needs. Currently, none of the available documentation is sufficient to
explain all issues relating to the use of Ada-based PDLs.

6.0 OTHER DESIGN LANGUAGES

Some of the languages identified in the survey are not described in the
previous sections. These languages are omitted due to lack of documentation,
or because they are not considered Ada-based PDLs. These languages are
identified and described briefly in this section.

6.1 PDLs in Early Stages of Development

Two of the organizations contacted in the course of the survey responded
that they are developing an Ada-based POL, but as yet no information is
publicly available. These were Caine, Farber, & Gordon, Inc. and IDL Tech.
The second of these, IDL Tech, expects to have information available in the
first quarter of next year.

Five other organizations currently have no formal documentation on their
PDLs, but provided some brief notes. The remainder of this subsection
describes these POLs. All these PDLs are still under development.

6.1.1 ACK (Edward F. Hoover, III)

Ack is a highly generalized PDL that uses neutral and inflected tokens.
These tokens are related to the concept of viewpoints of duty in a cycle of
action as causes, actions, or results. Each of these may comprise a view of
auxiliary or tangible referents. This leads to an abstract syntax closely

59



related to simple English grammar and homologous to class and subclass
constructs, nested graphic objects, textual outlines, and relational tables.

A Socratic dialogue is used to address the role of the software developer
in the dynamic context of his job, orient his conceptual approach, and elicit
the necessary observations for analysis. These observations are recorded
using graphic structures that support generically reducing the observations or
extending them into increasingly detailed designs. A verbal verification
procedure is provided.

The development of automated tools to support this approach and facilitate
the transition to Ada code is being considered.

6.1.2 ATS Ada PDL (Advanced Technology Systems)

ATS is developing an Ada-based POL that will be used and evaluated as an
alternative to an existing PDL in an operation where the target language is
COBOL. In this case, the Ada-based POL will serve as a training path so that
programmers who are already familiar with PDL can develop an understanding of
Ada.

6.1.3 RCA Ada PDL (RCA)

RCA is developing an Ada-based PDL for internal use only. The PDL will
support the full Ada syntax and provide additional structured comments. A
variety of tools are planned that cover most of the items listed in Table 4-6
of this report. RCA is also studying the feasibility of a tool that will
apply a tasking model to analyze the real-time behavior of a system described
by a PDL model.

6.1.4 SDC Ada PDL (SDC, A Burroughs Co.)

The Ada-based PDL being developed by SDC supports MIL-STD-1815A Ada, and
provides additional mechanisms for expressing supplemental design information
embedded in Ada comments. This extra information addresses issues such as:
completeness, requirements bracing, invariants, assertions, modifications,
exception identification, and enforcement of a documentation discipline.

A suite of tools is being developed to support use of the PDL. The
primary tool is a PDL processor that performs syntactic and semantic analysis
of a PDL design. This is done by use of an ordered attribute grammar and

.0 tree-walk evaluation of a Diana tree that represents the Ada source language
and annotations. The result of running the PDL processor on a PDL design is
the detection of static semantic errors, the production of diagnostic
messages, and the creation of attribute trees that can be used as input to
other tools in the suite. The processor also performs standards adherence
checking.

60



The other tools in the suite will include a pretty printer,
cross-referencer, and module dependency and structure chart generator.
Documentation generators and metric reports are also being considered, along
with tools to support configuration management, managerial procedures, and
other life cycle activities.

6.1.5 TAP (Reifer Consultants, Inc.)

The TAP Ada-based PDL and tool set is expected to be available in the near
future. A VAX version of the tool set is currently undergoing testing and the
target date for its release is March 1985. An IBM XT/AT version is also under
development and is intended for release in May 1985. The tool set is being
developed as a product. Documentation and training will be provided, and
licensing agreements will include full support.

TAP supports a subset of the Ada language features, but provides several
extensions including an innovative keyword feature that allows users to define
their own addititonal constructs. Directives are used to ease potential

.. Tman-machine interface problems and provide the user with options for both
processing and format control.

* The outputs provided by the tool set include: a cross-reference of all
non-keywords, a module invocation tree, and multiple cross-references of
marked symbols that cross package boundaries. The tools also provide pretty
printing capabilities and enforcement of design standards. A novel feature is
a box concept that can be used to highlight critical areas of a design.

6.2 Other Design Languages

A number of techniques are discussed here that do not fall under the
classification of Ada-based. These include a general design support
environment, a program verification language, a graphical design language, and
a training research program.

6.2.1 AIM/SEM (ISOOS, Inc.)

The ISDOS project was begun at the University of Michigan in the early
1970's. Over the past fourteen years it has produced an extensive set of
powerful tools aimed at designing, building, documenting, and maintaining
large software systems. Unlike Ada-based POLs, the ISDOS project does not
focus on design activities, but intends to provide total life cycle support.
It has already gained widespread recognition for the Problem Statement
Language/Problem Statement Analyzer (PSL/PSA) tool that supports the
specification of software requirements.

The ISOOS project is based on the premise that all knowledge pertinent to
a system development project can be represented by entity relationship (ER)
modelling. The ER model forms the schema of a very general data base for
capturing information. Existing tools are able to extract data for the model
by analysis of structured text or program code itself. Once data has been
captured, a variety of analyses and reports can be generated. This general

61



model can be specialized to work with particular conventions and standards at
each stage of the life cycle. The system data base is maintained for the

" . entire life cycle and becomes the repository of all system information.

Recent advances have added capabilities designed to support the
development of Ada software. In order to illustrate how ISDOS currently

relates to Ada, it is best to trace the history of AIM/SEM, and thereby to
- explain its name. During the ISDOS project, a general methodology support

tool was developed: the System Encyclopedia Manager (SEM). This general tool
can be specialized for a particular method using the Information System

Language Definition Manager or ISLDM. One such specialization has already
.- been performed in the case of the Ada Integrated Methodology (AIM) developed
. by General Dynamics under the sponsorship of the U. S. Army. The resulting

support environment for Ada development is known as AIM/SEM.

The PDL used in AIM/SEM is the GDADL Ada-based PDL developed by General
Dynamics. This PDL is described in Section 4.2.5.

The ISDOS support environment has much to recommend it to the Ada world.
It emphasizes automated support, provides tools for a wide slice of the life
cycle, and has an extensive track record. It is logical to expect that ISDOS
will provide full support for a particular PDL in the near future. Meanwhile,
any project large enough to justify the effort needed to set up and maintain a
comprehensive project data base could consider adapting the ISDOS tools and
data base to run with the Ada-based PDL selected for the project.

6.2.2 ANNA (Stanford University)

ANNA extends the Ada language with facilities that permit formal
. specification of the intended behavior of Ada programs. It provides a means

for augmenting Ada with precise machine processible extensions that allow the
application of well established formal methods of specification and
documentation techniques to Ada. As such, its primary use lies in the
verification of Ada programs.

* ANNA provides two kinds of formal comment: virual Ada text and
annotations. Both take the form of legal Ada comments. The first is preceded

*0 by the virtual comment indicator (--:), and the second is preceded by the
symbol -- I)'

* . The virtual Ada text is used to define concepts and compute values that

are used in the annotations. It is stated using the syntax and semantics of
Ada and must be legal in the context of the underlying Ada program.

62

0



One of the examples given in the ANNA documentaion is as follows:

-- ITEM and MAX are previously declared in the Ada text
package STACK is

function LINGTH return NATURAL;
procedure PUSH(X : in

-- where in STKCK.LENGTH < MAX,
"---' uI~-(STACK.rENGTH = in STACK.LENGTH+1) ;

procedure POP : out ITEM)

package body STACK is
type TABLE is arFay (POSITIVE RANGE <>) of ITEM;
' - E : TABL(1 .. MAX) ;
INDEX : NATURAL range 0.. MAX =0

function LENGTH return NATURAL;
-I Wherre eturn-TNUX;
is separate;

end STACK;

*Here the function used in the annotations is defined in virtual ada text.

Annotations may contain two types of variables: logical variables and
program variables, they are used to express constraints on the values of
program variables over their scope, where the scope of an annotation depends
on its position in the underlying ada text and is determined according to Ada
scope rules.

ANNA defines a formal syntax and sqman~i C for expressi annotations
that is similar to Ada. one of the major 1 erences result from the
provision of two additional quantifiers FOR ALL and EXIST. Several different
kinds of annotations are provided that roughly correspond to the Ada language
constructs. There are annotations of objects, subtypes and types, statements,
and subprograms. The earlier example demonstrates the use of a subprogram
annotation. Additionally, ANNA provides axiomatic annotations of packages,
propagation annotations of exceptions, and context annotations.

Each kind of annotation describes a set of properties that must be
satisfied by computations of the Ada text. If the computations do satisfy all
the properties, the Ada text is deemed consistent with the annotations.

Automated verification of Ada programs will be based on a definition of
ANNA that permits a series of transformations to be performed on the
annotations. Following this approach, each annotation will be successively
transformed into simpler annotations until they have all been reduced to
assertions. The assertions can then be translated into Ada text that checks
whether the assertion is satisfied by a program state. Tools are currently
being developed to perform these functions.

63

"., ... . .. .



In its present form ANNA is not a PDL, though its developers are
investigating how it can be modified for use as a PDL. Meanwhile, ANNA is a
valuable tool that can be employed in conjunction with any of the Ada-based
PDLs discussed in this report.

6.2.3 CAEDE (Carleton University)

The Carleton Embedded System Design Environment (CAEDE) is an
implementation of the design notation used in a design methodology discussed
in "System Design with Ada" [8]. It is a graphical program design language
intended to support production of Ada code. While it is an Ada-based PDL in
name and fact, the use of graphs and symbols sets this POL apart from the
others in the survey. The motivation for CAEDE is also novel within the
current circle of PDL offerings.

Ada was developed to support the development and maintenance of embedded
systems, that is, systems that contain cooperating processes communicating
asynchronously. Yet it is possible to express a design in an Ada-based POL
that shows poor performance during execution. Proper design of an embedded
system requires an understanding of the behavior of the network of queues and
processes that generally only becomes available as a result of compiling the
Ada-based program.

CAEDE provides a high level graphical technique for designing the network.
It uses a novel paradigm for developing software. Systems are designed using
an interactive graphical editor. Properly annotated system designs can then
be transformed into an engineering data base that consists of Prolog facts.
The facts can be analyzed to write correct Ada language statements for
packages, tasks, and their interfaces. Moreover, the facts can be given to a
theorem prover to test whether real-time behavior faults such as deadlock are
possible.

The developers hope that this PDL will mitigate the shortage of engineers
who are trained to analyze and design such embedded systems.

6.2.4 Hazeltine Ada PDL (Hazeltine Corp.)

Information about this POL was taken from the fifth chapter in a recent
monograph by R. S. Freedman. It uses the full Ada syntax and it is directed
at the same phase of the life cycle as Ada-based POLs. However, it does not
go beyond Ada in either of the two areas mentioned in Section 3.1. It does
not establish design rules and guidelines or provide mechanisms for capturing
supplemental design information. Therefore, this POL is not classified as
Ada-based and there is no fair basis for directly comparing this effort with
the others.

64

..



On the other hand, the book describing this PDL could be adapted to work
as tutorial or training material for any of the Ada-based PDLs. The material
in Chapter 5 includes discussion of a data flow methodology for system
development and presents a sizable case study illustrating the use of Ada as
a PDL. The lack of any unique or proprietary PDL features allow the book's
use to supplement the sketchy preliminary documentation that characterizes
many Ada-based POLs.

The bulk of the book provides instruction in the use of Ada to develop
code. In comparison to other texts, this book is best suited to
time-constrained training programs where an in-depth presentation of Ada is
not possible. An instructor could teach the material in this book as the
classroom portion of the course and assign one of the more comprehensive
textbooks as additional reading.

6.2.5 York Ada PDL (University of York)

The University of York is conducting a detailed assessment of the
suitability of Ada for use both as a PDL and as a language for specifying
requirements, with a particular focus on the development of information
systems. To date, there is no evidence that they are developing a particular
Ada-based PDL.

The work has involved a re-examination of the roles of specification
languages and program design languages. It gives several examples of how Ada
can be used for these purposes, discusses useful extensions to Ada, and
suggests desirable support aids.

One of the conclusions reached is that formal models can be used to record
functional requirements during the development of various kinds of information
systems. These different types of information systems are:
transition-effecting systems, facility providing systems, and
relation-maintaining systems. Ada subprograms, packages, and tasks correspond
to these.

A further conclusion is that Ada provides adequate notations for the major
PDL issues, particularly structural ones. The main deficiency of Ada is that
the specification of interfaces does not identify effects. However, the
provision of a notation for declarative assertions could eliminate this
problem.

7.0 Conclusions

74,I Much progress has been made since the previous survey two years ago. Many
more Ada-based PDLs are available and these POLs reflect a more consistent
approach to the use of Ada for design purposes. While the POLs differ in the
precise language features they provide, the need for mechanisms for expressing
postponed design decisions and information that supplements the POL design
statements is generally recognized. Additionally, these POLs are starting to
be fairly well supported by automated tools.

65

61

L........................... .). .........- '



However, the work in this field is still continuing. Not only do new
Ada-based PDLs continue to be developed, but many of the existing PDLs are
expected to evolve. This evolution will occur in response to the experience
gained through the practical use of the PDLs, and also as a result of further
study into design issues.

Indeed, several trends that justify close observance are already evident.
One is the potential use of Ada-based PDLs to promote reusability of software
designs. Another is the increased ability to track requirements through to
designs, and designs through to Ada code. An example in the second case is
ANNA. Although ANNA is not itself a PDL, it can be used in conjunction with
any PDL that follows Ada syntax and semantics. Use of ANNA facilitates some
forms of formal verification of designs and also supports verifying that a
piece of code does indeed implement a design. New paradigms for the
interaction of people with the design document are also starting to appear.
The best example of this is CAEDE.

The automated support aspect of Ada-based PDLs will change significantly
over the next few years. Not only will there be more tools available, but the
nature of these tools is likely to change. One advance, demonstrated by
AIM/SEM, in automated support is the integration of PDL tools with automated
support functions covering earlier life cycle phases.

0
This atmosphere of continual change presents difficulties for those trying

to decide which PDL to adopt. The current set of Ada-based PDLs provides a
wide spectrum of choice. While no one POL is demonstrably superior to the
others, there are some guidelines that a potential user can use to narrow the
selection.

If an organization has a large investment in an existing non-Ada PDL, the
evolutionary development of an Ada-based PDL is beneficial in the short run.
If this is not the case, or if the organization is willing to expand the
community of POL users by an extensive training program, a PDL that uses the
full Ada syntax with no variations is recommended. There seems to be no
reason to doubt the acceptability of Ada syntax for a design language,
although it might be wise to defer the use of certain Ada language features.

" . The advantages of a unified syntax are significant. Moreover, design and
coding experience become transferabale.

No such firm recommendation can be given in the case of the compilability
of the PDL. Many developers argue that the use of a compiler forces an
inappropriate attention to detail. If there are no tools available other than
the compiler, then it is clearly desirable to have a compilable PDL. However,
this is not the situation for all PDLb. Many Ada-based PDLs have pretty
printers, cross-reference generators, and data dictionary tools that provide
much of the documentation a compiler produces. The choice between a compilable
PDL and a noncompilable but automated one cannot be decided on principle alone
This difference should be the subject of future field tests.

Consideration of the types of mechanisms desired for postponing design
decisions and expressing supplemental information also influence a PDL
selection. As noted earlier in this report, the provision of these additional

66

• - .- . -.-.- *. - -. .-. .* .. . -* . .- " ". .- . -.. ",. ." -. '
. '-.. .. .-.... .......... . . .... ' ..... . . ..... _,', " ,.', '



POL features is the area of most divergence among the PDLs. A few of the
factors that influence these issues include the software application type, and
the need to meet existing organization standards.

An organization may need an Ada-based PDL tQ develop software that is
implemented in languages other than Ada. In this case, it is best to choose a
PDL that provides guidance for translating the design text into these other
languages.

Sometimes, an organization wishes to specify a PDL that will be used by
contractors to develop software that must subsequently be supported by people
other than the developers. Or the organization may need to purchase a
software system developed using an Ada-based POL. In these cases, the
priority of selection factors may change. The most important consideration is
now likely to concern the documentation aspects of the POL, since
documentation quality affects design reviews and the eventual modification and
maintenence of the software. The documentation is a function of 1) the design
unit templates; 2) the methodology and style guidelines; and 3) the
effectiveness of automatic documentation tools. These PDL aspects are
described elsewhere in the report. However, it is important to note that the
documentation features described in Byron and WIS Ada PDL, to name just two,
are independent of the PDL selection and can be added to any other PDL.

4
It is also wise to consider the future support that will be provided for a

given PDL. Those that are part of a long term program, such as the WIS Ada
POL, are likely around for many years. This means that new tools will
probably be developed and, where these are publicly available, this is a
considerable advantage. The long term availability of the POL is also
relevant in the context of developing libraries of reusable designs.

However, if there are no PDLs that meet the requirements, an organization
should consider tailoring an existing PDL or selecting different features from
several PDLs to build a composite. One note of caution: if this approach is
followed, it is important that the composite pdl is well documented, both the
software developers and design reviewers need a clear and concise description
of the syntax and semantics that constitute the POL.

The recent progress in Ada-based PDLs is encouraging. On the whole, the
design of these PDLs reflects contemporary software engineering practices, and
the PDLs themselves are generally better documented than earlier efforts.
Additionally, the common Ada ancestry has resulted in a high degree of
similarity among the PDLs.

Although the degree of similarity among the PDLs is sufficient to allow
the mixing and matching of PDL features, there are advantages to be gained by
more standardization. In many respects, standardization of Ada-based PDLs
would offler the same benefits as standardization of programming languages.
Although several DoD agencies are in the process of developing standards and
guidelines, these are independent efforts. This is unfortunate. The
establishment of a community of software developers that use a common design
language and the increased availability of automated support tools that will
result from standardization would support attaining many of the benefits
sought by the technical community.

67

"A A



In terms of future advances to the state-of-the-art in Ada-based PDLs,
- these will be the result of integrating POLs with design techniques. This is

necessary if there is to be full validation and verification of the
-information captured by a POL, or full use of the PDL design text to guide the

generation and testing of Ada code.

68i"
,...-*. -.

, - .,. .. . . . .



REFERENCES

[1] "Ada Programming Design Language Survey FINAL REPORT," Naval Avionics
Center, Indianapolis, Indiana, October 1982.

[2] "A Guide," IEEE Ada as a POL Working Group, (Draft), July 1984.

[3] "Ada DL Developers," Ada Letters, Volume IV, Issue 3, November/December
1984.

[4] "The Development of ADA Program Design Languages," Department of the Army,
Headquarters United States Army, Communications and Electronics Command,
Fort Monmouth, New Jersey, January 1984.

[5] "Military Standard - Ada Programming Language," ANSI/MIL-STD-1815A, United
States Department of Defense, January 1983.

[6] Grady Booch, "Software Engineering with Ada," The Benjamin/Cummings Pub-
lishing Company, Inc., Menlo Park, California, 1983.

[7] Joint Logistics Commanders, "Defense System Software Development," Com-
puter Software Management Subgroup, (Draft), August 1983.

[8] R. J. A. Buhr, "System Design with Ada," Prentice Hall, Englewood Cliffs,
New Jersey, 1984.

69

i

!4.

4-i

69

a



APPENDIX A: Addresses of PDL Developers

This appendix provides the names and addresses of the organizations re-
sponsible for developing the PDLs discussed in this report. In those cases
where the PDL is sponsored by a different organization to the one that devel-
oped it, the name of the sponsoring organization is given. The appendix also
identifies an appropriate contact at each of the organizations given.

The information is presented in two different formats. The first part of
the appendix lists the details for each PDL in the order dictated by an alpha-
betical sorting on PDL abbreviations. Whereas Part 2 presents the same de-
tails ordered on the name of the organization.

PART 1

POL Identification: ACK

Organization: (Independent consultant)

Contact: Edward F. Hoover, III
505 Cypress Point, #171
Mountain View, CA 94303

Tel: 415-961-8396

PDL Identification: ADAP

Organization: SofTech, Inc.
3100 Presidential Drive
Fairborn, OH 45324

Contact: Glen Kersnick
Tel: 513-429-2771

POL Identification: ADA/SOP

Organization: Mayda Software Engineering, IL Ltd.
PO Box 1389
Rehovot
Israel 76113

Contact: Zui Yami
Tel: (08) 473-480

PDL Identification: AIM/SEM

Organization: ISOOS Inc.
325 Eisenhower Parkway, Suite 1039

A-1

. .... . , .. .~L



PO Box 4179
Ann Arbor, MI 48106-4179

Contact: Jeff Baron
Tel: 313-663-6027

PDL Identification: ANNA

Organization: Stanford University
Computer Systems Laboratory
Department of Electrical Engineering & Computer Science
Stanford, CA 94305-2192

Contact: David C. Luckham
Tel: 415-497-2300

POL Identification: ATS Ada POL

Organization: Advanced Technology Systems
8027 Leesburg Pike
Vienna, VA 22180

Contact: William Morsch
Tel: 703-827-9519

POL Identification: BTO Ada POL

Organization: Bell Technical Operations
6365 East Tanque Verde
Suite 200
Tucson, AZ 85717

Contact. Mary Jane Stoughton
Tel: 602-721-0500

PDL Identification: Byron

Organization: Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

Contact: Barbara Guyette
0 Tel: 617-661-1840

POL Identification: CAEDE

Organization: Carleton University
Department of Computer and System Engineering
Ottawa
Ontario, KiS 5B6

A-2

0



Canada

Contact: Prof. Ray Buhr
Tel: 613-231-2645

POL Identification: CFG Ada PDL

-* Organization: Caine, Farber, & Gordon, Inc.
750 E. Green Street
Pasadena, CA 91101

Contact: Kent Gordon
Tel: 818-449-3070

PDL Identification: GDADL

Organization: General Dynamics
Pomona Division
PO Box 2507
Pomona, CA 91769

Contact: Thomas S. Radi
Tel: 714-620-7511

PDL Identification: Harris Ada PDL

Organization: Harris Corporation
Government Information Systems Division
PO Box 98000
Melbourne, FL 32902

Contact: Cameron Donaldson
Harris GISD Software Operations MS 1/1545
505 John Rodes Blvd.
Mel ourne, FL 32902

Tel: 305-242-5181

PDL Identification: Hazeltine Ada POL

- Organization: Hazeltine Corporation
Cuba Hill Road
Greenlawn, NY 11740

0 Contact: Roy S. Freedman
Tel: 516-261-7000 Ext. 2509

- ". PDL Identification: IDL Ada POL

* Organization: IDL Tech

A-3

::c'. , - '-" - ,-- - " * - :. .- . -- : i -- .-. - ---*".- . ,



TW.P

18590 Centura Blvd., #202
Tarzana, CA 91356

Contact: Dr. Guy DeBalbine
Tel: 818-343-2083

PDL Identification: JPDL

Organization: U.S. Air Force Systems Command
Electronic Systems Division
TCS
Hanscom AFB, MA 01731

Contact: Robert G. Howe
Mitre Corporation
PO Box 208
M/S XOO
Bedford, MA 01730

Tel: 617-271-2000

PDL Identification: LTH Ada PDL

Organization: LTH Systems, Inc.
776 Shrewsbury Avenue
Tinton Falls, NJ 07701

Contact: Bob Weissensee
Tel: 201-530-0990

PDL Identification: POL/Ada

Organization: IBM Federal Systems Division
15 Firstfield Drive
Gaithersburg, MD 20875

Contact: Don O'Neill
Tel: 301-921-8913

PDL Identification: RCA Ada POL

Organization: RCA
Government Systems Division

*O Moorestown, NJ 08057

Contact: R. M. Blasewitz
Tel: 609-541-7000

* POL Identification: RN ADAP

Organization: SofTech, Inc.

A-4

0



460 Totten Pond Road
Waltham, MA 02254

Contact: Chris Braun
Tel: 617-890-6900

PDL Identification: SAIC Ada PDL

Organization: SAIC Comsystems Division
2801 Camino Del Rio South
San Diego, CA 92138

Contact: Timothy Porter
Tel: 619-293-7500

PDL Identification: Sanders Ada/PDL

Organization: Sanders Associates, Inc.
Federal Systems Group
95 Canal Street
Nashua, NH 03061

-.Contact: Daryl R. Winters
Tel: 603-885-9225

POL Identification: SOC Ada POL

Organization: SDC, A Burroughs Co.
Research & Development
PO Box 517
Paoli, PN 19301

Contact: Terry Paton
Tel: 215-648-7200 Ext. 7268

PDL Identification: TAP

Organization: Reifer Consultants, Inc.
25550 Hawthorne Blvd.
Torrance, CA 90505

. Contact: Don Reifer
Tel: 213-373-8728

POL Identification: TI Ada PDL

Organization: Texas Instruments, Inc.
PO Box 801
Mail Station 8007
McKinney, TX 75069

A-5

,~~~~~~..... .... .. . '.."'-."......-' •........_....,..................,....,......,.....,....;.........-......- .



Contact: Richard Conn
Tel: 214-952-2139

PDL Identification: TRW Ada POL

Organization: TRW
MS R2/1134
One Space Park
Redondo Beach, CA 90278

Contact: Hal Hart
Tel: 213-535-5776

PDL Identification: WIS Ada PDL

Organization: WWMCCS Information System
U.S.A.F. Systems Command (Electronic Systems Div.)
Captain Percy Saunders
ESD/SCW-2E
Hanscom AFB, MA 01731

Contact: Al LaMontagne (Developer)
GTE Communication Systems
1777 North Kent Street
Arlington, VA 22209

Tel: 703-247-9282

PDL Identification: XAda

Organization: GTE Sylvania Systems Group
Western Division
100 Ferguson Drive
PO Box 7188
Mountain View, CA 94039

Contact: Dr. Sam Harbaugh (Developer)
Integrated Software Inc.

* 620 Iris Avenue
Sunnyvale, CA 94086

Tel: 408-773-1621

PDL Identification: York Ada PDL

Organization: University of York
Heslington
York, YO1 5DD
England

Contact: Professor I. C. Pyle
Tel: 44 + 0904 59861

A-6



PART 2

Organization: Advanced Technology Systems
8027 Leesburg Pike
Vienna, VA 22180

POL Identification: ATS Ada POL

Contact: William Morsch
Tel: 703-827-9519

Organization: BTO Technical Operations
6365 East Tanque Verde
Suite 200
Tucson, AZ 85717

PDL Identification: Bell Ada PDL

Contact: Mary Jane Stoughton
Tel: 602-721-0500

Organization: Caine, Farber, & Gordon, Inc.
750 E. Green Street
Pasadena, CA 91101

POL Identification: CFG Ada POL

Contact: Kent Gordon
Tel: 818-449-307u

Organization: Carleton University
Department of Computer and System Engineering
Ottawa
Ontario, KIS 5B6
Canada

PDL Identification: CAEDE

Contact: Ray Buhr
Tel: 613-231-2645

. Organization: General Dynamics
Pomona Division
PO Box 2507
Pomona, CA 91769

PDL Identification: GDADL

Contact: Dr. Thomas S. Radi
Tel: 714-620-7511

A-7

..°.



Organization: GTE Sylvania Systems Group
Western Division
100 Ferguson Drive
PO Box 7188
Mountain View, CA 94039

PDL Identification: XAda

Contact: Dr. Sam Harbaugh (Developer)
Integrated Software Inc.
620 Iris Avenue
Sunnyvale, CA 94086

Tel: 408-773-1621

Oganization: Harris Corporation
Government Information Systems Division
PO Box 98000
Melbourne, FL 32902

PDL Identification: Harris Ada PDL

Contact: Cameron Donaldson
Harris GISD Software Operations
MS 1/1545
505 John Rodes Blvd.
Melbourne, FL 32902

Tel: 305-242-5181

Organization: Hazeltine Corporation
Cuba Hill Road
Greenlawn, NY 11740

PDL Identification: Hazeltine Ada PDL

Contact: Roy S. Freedman
Tel: 516-261-7000 Ext. 2509

Organization: IBM Federal Systems Division
15 Firstfield Drive
Gaithersburg, MD 20875

PDL Identification: POL/Ada

Contact: Don O'Neill
Tel: 301-921-8913

Organization: IDL Tech
18590 Centura Blvd., #202

* Tarzana, CA 91356

POL Identification: IDL Ada PDL

A-8
Ul

.



Contact: Dr. Guy DeBalbine
Tel: 818-343-2083

Organization: Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

POL Identification: Byron

Contact: Barbara Guyette
Tel: 617-661-1840

, Organization: ISOOS, Inc.
325 Eisenhower Parkway, Suite 103
PO Box 4179
Ann Arbor, MI 48106-4179

PDL Identification: AIM/SEM

Contact: Jeff Baron
Tel: 313-663-6027

Organization: LTH Systems, Inc.
727 Eastern Lane
Brickton, NJ 08725

POL Identification: LTH PDL

Contact: Bob Weissensee
Tel: 201-530-0990

Organization: Mayda Software Engineering, IL Ltd.
PO Box 1389
Rehovot
Israel 76113

POL Identification: ADA/SDP

Contact: Zui Yami
Tel: (08) 473-480

! Organization: Reifer Consultants, Inc.
25550 Hawthorne Blvd.
Torrance, CA 90505

PDL Identification: TAP

Contact: Don Reifer
Tel: 213-373-8728

A-9

.......................................



Organization: RCA
Government Systems Division

*, Moorestown, NJ 08057

PDL Identification: RCA Ada POL

Contact: R. M. Blasewitz
Tel: 609-541-7000

Organization: Sanders Associates, Inc.
Federal Systems Group
95 Canal Street
Nashua, NH 03061

PDL Identification: Sanders Ada/PDL

Contact: Daryl R. Winters
Tel: 603-885-9225

Organization: SAIC Comsystems Division
2801 Camino Del Rio South
San Diego, CA 92138

PDL Identification: SAIC Ada PDL

Contact: Timothy Porter
Tel: 619-293-7500

Organization: SOC, A Burroughs Co.
Research & Development
PO Box 517
Paoli, PN 19301

PDL Identification: SDC Ada PDL

Contact: Terry Paton
Tel: 215-648-7200 Ext. 7268

Organization: SofTech, Inc.
3100 Presidential Drive
Fairborn, OH 45324

PDL Identification: ADAP

Contact: Glen Kersnick
Tel: 513-429-2171

Organization: SofTech, Inc.
'* 460 Totten Pond Road

Waltham, MA 02254

A-IO



POL Identification: RN ADAP

Contact: Chris Braun
Tel: 617-890-6900

Qrganization: Stanford University
Computer Systems Laboratory
Department of Electrical Engineering & Computer Science
Stanford, CA 94305-2192

POL Identification: ANNA

Contact: David C. Luckham
Tel: 415-497-2300

Organization: Texas Instruments, Inc.
PO Box 801
Mail Station 8007
McKinney, TX 75069

POL Identification: TI Ada PDL

Contact: Richard Conn
Tel: 214-952-2139

Organizationt TRW
MS R2/1134
One Space Park
Redondo Beach, CA 90278

PDL Identification: TRW Ada PDL

Contact: Hal Hart
Tel: 213-535-5776

Organization: U.S. Air Force Systems Command
Electronic Systems Division
TCS
Hanscom AFB, MA 01731

POL Identification: JPDL

Contact: Robert G. Howe
Mitre Corporation
PO Box 208
M/S X010
Bedford, MA 01730

Tel: 617-271-2000

Organization: University of York

A-11



Hesl ington
York, YO 5DOD
England

POL Identification: York Ada POL

Contact: Professor I. C. Pyle
Tel: 44 + 0904 59861

Organization: WWMCCS Information System
U.S.A.F. Systems Command (Electronic Systems Div.)
Captain Percy Saunders
ESD/SCW-2E
Hanscom AFB, MA 01731

POL Identification: WIS Ada PdL

, Contact: Al LaMontagne (Developer)
GTE Communication Systems
1777 North Kent Street
Arlington, VA 22209

Tel: 703-247-9282

-A1

-A- 1

. . . . . . . . . . .



APPENDIX B: Titles of Documentation Received

This appendix identifies the POL documentation that was received during
the course of the survey. The information is ordered alphabetically on the
PDL abbreviations.

PDL Identification: ADAP

i) "The Ada Program Design Language (ADAP) User's Guide," October 15, 1983,
SofTech.

ii) "SYNtax Directed Interactive Editor (SYNDIE), SofTech.

PDL Identification: ADA/SOP

i) "ADA/SOP User Manual," Mayda Software Engineering, December 1984.

ii) Nancy Linden Yavne, "A Simple Approach to a Related Syntax for an Ada
POL," Mayda Software Engineering.

iii) Nancy May Linden, "CASPOMAT - an Automated Teller System," and tool input
and output listings, Mayda Software Engineering, 1984.

POL Identification: AIM/SEM

i) David E. McConnell, "Productivity Initiatives for Effective Lifetime
Support of the Navy's AEGIS Weapon System Computer Programs," Naval
Surface Weapons Center, Dahlgren, VA 22448, ISDOS Ref.# M0543-0.

ii) Edward J. Dudash and David E. McConnell, Excerpt from: "Computer Program
Design Document for the Automated Data Collection Systems (ADCS) Computer
Program," June 1, 1983, Naval Surface Weapons Center, Dahlgren, VA 22448,
ISDOS Ref.# M0544-0.

iii) Elliot J. Chikofsky, "Application of an Information Systems Analysis and
Development Tool to the Maintenance Effort," May 1983, ISDOS Project, Un-
iversity of Michigan, ISOOS Ref.# 83PSA-0444-1.

iv) Daniel Teichroew, Kyo Chul Kang and Vaclav Rajlich, "AIM/SEM: An Ada Sup-
port Environment," May 1984, ISETT 1984 Conference, ISDOS Ref.# M0652-0.

v) "Problem Statement Language (PSL) Language Reference Summary, July 1983,
ISDOS, Inc., ISDOS Ref.# M0174-8.

B-1

i.........................................



PDL Identification: ANNA

i) David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Brueckner and Olaf
Owe, "ANNA": A Language for Annotating Ada Programs," Technical Report
No. 84-261, Program Analysis and Verification Group Report No. 24, July
1984, Stanford University.

ii) David Luckham and Friedrich W. von Henke, "An Overview of ANNA: A Speci-
fication Language for Ada," Technical Report No. 84-265, Program Analysis
and Verification Group Report No. 26, September 1984, Stanford Univer-
sity.

POL Identification: BTO Ada POL

i) "PDL Specifications," Bell Technical Operations, Tucson, Arizona.

POL Identification: Byron

i) "The Byron User's Manual," Version 1.1, 1984, Intermetrics, Inc.

ii) "Byron Reference Manual," August 1983, Intermetrics, Inc.

iii) "IR-MA-335 AIE-Ada Compiler: Technical Description," July 19, 1984,
Intermetrics, Inc.

iv) Barbara Liskov, "Modular Program Construction Using Abstractions," Com-
putation Structures Group Memo 184, September 1979, MIT Laboratory for
Computer Science.

POL Identification: CAEDE

i) R.J.A. Buhr and G.M. Karam, "An Informal Overview of CAEDE: A Design
Environment for Ada," Report SCE 84-18, Carleton University, Ottawa

Canada, October 1984.

ii) Carol Hayes, "CAEDE User's Guide," Report SCE-84-24, Carleton University,
Ottawa Canada, November 1984.

iii) R.J.A. Buhr, "An Ada-Inspired Graphical Design Notation for Manual and
Computer-Aided Design of Modular, Concurrent Systems (with Examples),"
Report SCE-84-1, Carleton University, Ottawa Canada, January 1984.

PDL Identification: GDADL

i) Thomas S. Radi, "Disciplined Software Design Approach - Executive Sum-
mary," July 5, 1984, Pomona Division, General Dynamics.

ii) Thomas S. Radi, "Ada/PDL," September 5, 1984, Pomona Division, General
Dynamics.

B-2

..



iii) Thomas S. Radi, "General Dynamics Ada-Based Design Language (GDADL)
User's Guide," General Dynamics.

PDL Identification: Harris Ada PDL

i) "Ada Process Description Language Guide," Revision 2.0, Harris Corpora-
tion, Government Communications System Division, Software Methodology De-
velopment Group, 1984.

ii) "Ada Process Description Language Guide," Revision 1.0, Harris Corpora-
tion, Government Communications System Division, Software Methodology De-
velopment Group, March 1982.

iii) Brian Davis, "Partition Generator," Version 1.0, Harris Corporation, May
1983.

iv) "NESP Tool User's Guide (PDLAF, DGP, and DOCLST)," Harris Corporation,
April 1983.

v) "Diagram Graphics Program (DGP) User's Guide," Harris Corporation, April
1983.

vi) "Document List Program (DOCLST) User's Guide," Harris Corporation, April
1983.

vii) "XREF User's Guide," Harris Corporation, June 1983.

viii)"Example of Progressive Elaboration of PDL by Adding More Procedures
within an Encapsulation Package," Harris Corporation.

ix) "Appendix C - Compilable Harris Ada PDL Units," and examples of PDL, Har-
ris Corporation.

PDL Identification: Hazeltine Ada PDL

i) R. S. Freedman, "Programming Concepts with the Ada Language," Petrocelli
Books, Inc., Princeton, New Jersey, 1982.

PDL Identification: JPDL

i) "JAMPS PDL Guide," Document Ref. 3285-2-210/3, October 1984, U.S. Air

Force Systems Command, Electronic Systems Division.

PDL Identification: LTH Ada POL

i) "An Interim Guideline for Ada Based Development and Product Design Docu-
mentation," Final, October 31, 1984, LTH Systems, Inc.

B-3



PDL Identification: PDL/Ada

i) Don O'Neill, "Software Engineering," IBM Federal Systems Division.

ii) Don O'Neill, "GPS Adaption of Modern Software Design," IBM Federal Sys-
tems Division.

iii) "WIS CUS Design Guidelines," IBM Federal Systems Division.

iv) "Process Design Language/Ada - (POL/Ada) Reference Manual," April 14,
1983, IBM Federal Systems Division, Ada Coordinating Group.

PDL Identification: RN ADAP

i) "Regency Net Ada Program Design Language User's Guide," Document Ref.
3295-3, May 1984, SofTech, Inc.

PDL Identification: SAIC Ada PDL

i) Tim Porter and Brian H. Creighton III, "Ada Program Design Language (PDL)
Guidelines," Version 1.1, Document No. SAI 10000-025-0002, SAIC, Comsys-
tems Division, November 1984.

ii) Donald A. Heimburger, Marcia A. Metcalfe and Henry Kleine, "SAI-SDDL User
Instruction Manual," February 24, 1982, Science Applications, Inc.

iii) "A-SDDL Software Design and Documentation Language," Science Applica-
tions, Inc.

iv) "SAI-SODL Design Example," Science Applications, Inc.

v) "SAI-SDDL Simscript Documentation Example," Science Applications, Inc.

vi) "SAI-SDDL Error Handling Design Example," Science Applications, Inc.

PDL Identification: Sanders Ada/POL

i) "Reference Manual for Sanders Ada/PDL Program Design Language," Draft,
December 1983, Software Systems Engineering Federal Systems Group, San-
ders Associates.

PDL Identification: TI Ada PDL

i) "TI Ada PDL Preliminary," Texas Instruments, Inc.

POL Identification: TRW Ada PDL

i) "Ada PDL User's Manual," TRW Defense Systems Group, Redondo Beach, Cali-
fornia, September 1984.

B-4

I""'



ii) Hal Hart, "Ada PDL Demonstration," TRW Defense Systems Group, December
* 1983.

iii) Hal Hart, "The Role of Ada POL in TRW's Ada Preparation Strategy," TRW
Defense Systems Group, June 1983.

PDL Identification: WIS Ada PDL

i) "WIS Ada PDL Standard," CDRL Sequence No. 403, Contract No.
F19628-84-C-0032, September 17, 1984, Electronic Systems Division, Air
Force Systems Command, Hanscom AFB, MA 01731.

PDL Identification: XAda

i) Sam Harbaugh, "XAda: An Executable Ada Design Language Methodology," in
Ada Letters November 1984.

ii) "SLICE Requirements Specification," GTE Sylvania Systems Group.

PDL Identification: York Ada PDL

i) I. C. Pyle, "Using Ada for Specification of Requirements and Design,"
York Computer Science Report No. 63, York University, Great Britain.

B

FB -

o,.. . . .. . . . . . . . . . . . . . . . ..O



~I

,

FILMED

*7-85

* ~ DTIC
*". 

."--


